中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/25807
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 43457782      在线人数 : 1168
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/25807


    题名: 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用;Enhancement- and Depletion-Mode AlGaAs/InGaAs pHEMTs: Device Characteristics, Modeling, and Circuit Applications
    作者: 林東明;Dong-Ming Lin
    贡献者: 電機工程研究所
    关键词: 空乏型;switch;dual-gate;enhancement- and depletion-mode;device modeling;pHEMT;symmetrical;distributed amplifier
    日期: 2009-11-17
    上传时间: 2010-06-11 16:20:28 (UTC+8)
    出版者: 國立中央大學圖書館
    摘要: 本論文主要探討增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體,由基本的單閘極元件到雙閘極元件特性,小訊號模型到對稱性非線性模型,最後是功率放大器電路與寬頻分佈式放大器設計應用。 單閘極增強型與空乏型高電子遷移率電晶體同時被製造在 6 吋砷化鎵基板,增強型高電子遷移率電晶體其截止頻率與最大振盪頻率分別為 35 GHz 與 78 GHz。相對地,空乏型高電子遷移率電晶體其截止頻率與最大振盪頻率則分別為 32 GHz 與 72 GHz。此論文發展出高精準度高電子遷移率電晶體小訊號模型,其精準度可從 50 MHz 到 40.05 GHz。此小訊號模型同時可以適用增強型與空乏型高電子遷移率電晶體,此外對不同偏壓所萃取的參數也詳細討論。 此外也進一步發展一個具有對稱性非線性模型,此模型可以精準模擬出微波開關器電路與放大器等電路。此模型之集極與源極具有互換性,其描述元件特性解析方程式是連續可微分,並可以精準描述出元件的次臨界電壓、臨界電壓、線性區、到飽和區。此元件模型加強描述高電子遷移率電晶體閘極電流與元件非線性電容特性,讓此元件模型有更精準非線性預測能力。利用此元件模型設計一個串聯式單埠單通微波開關器電路,從微波開關器功率與其諧波特性量測結果與此元件模型模擬比較,可以精準預測出微波開關器交互調變特性與功率諧波特性。為了讓此元件模型可以精準預測放大器電路,此元件模型額外增加兩個子電路,一為熱網路描述元件熱效應,另一個為動態電阻與電容組成子電路描述元件高頻散色效應。功率負載拉移系統可以用來評估此元件模型是否可以精準預測放大器非線功率性特性,此大訊號元件模型可以描述增強型與空乏型高電子遷移率電晶體非線性特性。 此論文並提出雙閘極增強型/增強型與增強型/空乏型高電子遷移率電晶體,比單閘極增強型元件擁有更高崩潰電壓。由於總電場被分配在兩個元件空乏區,其崩潰電壓可從原本單閘極元件的13 V 提高到雙閘極增強型/空乏型元件的 19 V 與雙閘極增強型/增強型元件的 17 V。此外雙閘極元件也有較高最大振盪頻率,原因於雙閘極元件具有較低輸出導納,其雙閘極增強型/增強型元件與增強型/空乏型元件的最大振盪頻率分別為 123 GHz 與 100 GHz。此外雙閘極增強型/空乏型元件也有相當好輸出功率特性,其輸出功率在 2.4 GHz為808 mW/mm,比單閘極增強型元件輸出功率636 mW有非常明顯提升。我們也利用雙閘極增強型/增強型與增強型/空乏型元件實際實現一個兩級具有高增益與高輸出功率特性功率放大器,此放大器在中心頻率為 2.4 GHz時,其輸出最大功率為 24 dBm 與 40 dB 增益特性。 此論文最後發展雙閘極增強型/空乏型元件電路模型,並實際將元件與模型實現在一寬頻分佈式放大器。其雙閘極增強型/空乏型元件主要由兩個分別獨立單閘極增強型與空乏型元件大訊號模型和外部寄生元件所組成,此元件模型可以精準模擬出元件直流與射頻特性,並利用此模型設計一分佈式放大器。使用雙閘極增強型/空乏型元件所設計出分佈式放大器,完全是正偏壓且僅需要簡單偏壓網路即可。由於雙閘極極增強型/空乏型元件其空乏型元件閘極可以直接接地,其提供一好的寬頻接地效果,再利用一損耗補償電路使分佈式放大器有更寬頻特性。測量結果其頻寬可達25 GHz 與7 dB放大增益,且此分佈式放大器僅需 34 mW直流功率損耗。 This dissertation focuses on the development of enhancement- and depletion-mode AlGaAs/InGaAs pHEMTs including single- and dual-gate devices, small-signal and symmetry nonlinear models, and power amplifier and distributed amplifier applications. In this dissertation, the single-gate E- and D-mode pHEMTs were fabricated on 6 inch GaAs wafer. The fT and fmax are 35 GHz and 78 GHz for single-gate E-mode pHEMT and 32 GHz and 72 GHz for single-gate D-mode pHEMT. The small-signal model has been developed from 0.05 to 40.05 GHz to characterize high frequency response. The parameters in the small-signal model under different biases were measured and extracted to develop and analyze the nonlinear model. The developed small-signal model can be applied for single-gate E- and D-mode pHEMTs under any biases. Furthermore, a symmetrical nonlinear pHEMT model was developed for switch and amplifier circuits. The model is interchangeable between drain and source and can be incorporated directly in commercial software. The equations in this model are continuous and differentiable to any orders under entire bias range; and sub-threshold voltage, gate leakage current, and nonlinear capacitance characteristics are included for completeness. The model is used to design a single-pole-single-threw series switch circuit. The two-tone intermodulation distortion and nonlinear harmonic characteristics are measured and validated with model at both on- and off-state for the switch circuit. Finally, in order to take account of thermal and frequency dispersion effect in a conventional power amplifier, this symmetry model includes thermal sub-circuit and R-C network. The model for the power amplifier circuit was evaluated by load-pull system. The measured data shows good agreement with simulated data for switch and amplifier circuits. This new developed model validates for both single-gate E- and D-mode pHEMTs. The characteristics of dual-gate E/E- and E/D- pHEMTs are presented and compared to single-gate E-mode pHEMT. The dual-gate devices present a higher breakdown voltage because electric field in the dual-gate device is distributed between two depletion regions. The off-state breakdown voltage is improved from 13 V to 19 V by using dual-gate E/D-mode technology. Comparatively, dual-gate E/E-mode device demonstrates an off-state breakdown voltage of 17 V. Moreover, the dual-gate devices demonstrates a higher maximum oscillation frequency, fmax due to low output conductance, go. The fmax of dual-gate E/E-mode and E/D-mode pHEMTs are 123 and 100 GHz, respectively. The output power at 2.4 GHz is significantly increased from 636 to 808 mW/mm for a single-gate E-mode pHEMT and a dual-gate E/D-mode pHEMT, respectively. We also designed a 2.4 GHz high gain and high power density two-stage power amplifier using dual-gate E/E and E/D-mode transistors. A linear gain of 40 dB and maximum output power of 24 dBm were obtained. Finally, a dual-gate E/D-mode pHEMTs model is developed and used to design a distributed amplifier. The dual-gate E/D-mode pHEMTs model consists of a single-gate E- and a D-mode pHEMT and parasitic components. In this design, the distributed amplifier using dual-gate E/D-mode pHEMT only requires a positive bias and simple bias network. The gate-II of dual-gate E/D-mode pHEMT can be directly connected to ground and provides a good and wide bandwidth AC ground. Additionally, by using loss compensated network the bandwidth of distributed amplifier can be enhanced. The bandwidth and minimum power gain are 25 GHz and 7 dB with power dissipation of only 34 mW.
    显示于类别:[電機工程研究所] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML1024检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明