English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42696596      線上人數 : 1413
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/26003


    題名: 高介電質區寬度具週期變化之新型電漿波導布拉格光柵之研究;A Novel Plasmonic Waveguide Bragg Grating with Periodically-Varying Dielectric Stripe Width
    作者: 張殷榮
    貢獻者: 光電科學與工程學系
    關鍵詞: 奈米光子;電漿波導;波導布拉格光柵;Nanophotonics;plasmonic waveguide;waveguide Bragg grating;光電工程
    日期: 2010-07-01
    上傳時間: 2010-06-21 11:53:31 (UTC+8)
    出版者: 行政院國家科學委員會
    摘要: 奈米光子 (Nanophotonics) 在過去幾年內已引起廣泛的關注與興趣。此方面之研究乃因先進半導體製程技術致使一方面將「光子導入奈微米電子積體電路內」之概念成為可能;另一方面奈米光子元件本身亦具備實現微型化、高元件密度與高速光子積體電路之潛質。傳統光波導結構因受限於繞射極限而無法進一步縮小其尺寸。因此以次波長結構傳導電磁能量已成為實現上述構想最基本之研究。在可見光波長範圍,一般是以稱為表面電漿極子(surface plamon polaritons)來達成於次波長結構中傳遞能量之要求。最近之研究更已提出操作波長於光通訊波長範圍內之電漿波導元件。在未來將所有具備不同功能之光子元件整合於如現今積體電路般大小之光子晶片 (photonics chips) 內是可預見的。爲達成此目標,對用以實現光子晶片中不同功能之電漿波導元件之研究即愈顯格外重要而基本。於本研究計畫中,我們將提出以「金屬-絕緣體-金屬」結構為基礎且其操作於光通訊波長之新型電漿波導布拉格光柵。本計畫所提出之電漿波導布拉格光柵結構乃由金屬狹縫波導 (metal-slot waveguide) 及其中間高介質區寬度具週期變化之狹長帶所組成。我們將藉由解析分析與數值計算,系統化地深入探討此新型結構之物理機制、提出適於此新型結構之嚴格性平面 (in-plane) 激發機制、發展最佳化之製程與製程條件、實驗驗證上述之構想、並預期以此電漿波導結構為基礎,發展其他適用於未來光子晶片中所需之各種被動光子元件。 Nanophotonics has been attracting much attention worldwide in past several years to bring light into electronic integrated circuits (ICs) in one hand, and to realize miniaturized, high-density, and high-speed photonic ICs in the other, all using the mature semiconductor manufacturing processes. Under this scenario, guidance of electromagnetic energy at subwavelength structure has been of great interest in hopes of overcoming the natural diffraction limit that restricts further down-scaling of conventional photonic devices and offering a route to the convergence of electronics and photonics in the near future. In the visible wavelength range, subwavelength guidance of the energy is typically achieved using the so-called surface plasmon polaritons (SPPs). More recently, research on SPPs-based photonic devices at the telecommunication wavelength, mainly around 1550 nm, has also been reported. It is anticipated that, in the future, all the photonic functionalities may be put together within a photonic chip of size similar to that of today’s electronic ICs. Toward this end, research on the constituent plasmonic photonic devices for various functionalities (e.g. power splitter, wavelength filter, modulator, coupler … etc) is crucial yet fundamental. In this proposed research, we will be seeking an innovative one-dimensional metal-insulator-metal -based plasmonic waveguide Bragg grating operating at around telecommunication wavelength. It consists of a metal slot waveguide with periodically-varying central stripe. We will systemically investigate, through analytical and numerical approaches, the underlying physics of the proposed innovative structure, devise a new strictly in-plane excitation scheme suitable for the proposed plasmonic grating structure, develop an optimum processing flow/conditions/techniques, demonstrate experimentally these ideas, and working toward what would ultimately become a universal structure for the planar photonic ICs from simple plasmonic waveguides to other surface plasmon-based photonic devices.
    研究期間 : 9808 ~ 9907
    關聯: 財團法人國家實驗研究院科技政策研究與資訊中心
    顯示於類別:[光電科學與工程學系] 研究計畫

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML412檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明