「濕式顆粒聚合作用」常見於自然界中。其原理也經常被工業界使用來處理粉顆粒材料,例如製藥、粉末冶金、食品、農業、化工原料等等。其基本的過程是利用液體使顆粒彼此沾黏,藉以聚合成形,並利用各種操作條件與材料特性,來達到特定材料性質的技術。 高速、高剪力聚合機器 (high shear granulator)是工業界常見之儀器,因為高剪力的作用可以處理各種黏度範圍之添加液體。因此本文以該儀器為研究對象,並搭配常見之化工原料進行研究。分析方式則採用力學分析與質料交換的觀點來判定各個操作條件下的統御機制,與成長模式的定義。在假設粉末不溶解在添加液體中的前提下,本研究發現粉末材料的尺寸對於聚合現象有很大的影響,包括成長率、初始粒徑以及最終粒徑。液體添加量的影響則表現在液體分佈的速率與顆粒沾黏能力上。此外,顆粒聚合成功的關鍵在於彼此順利沾黏並且發生塑性變形。其中塑性變形的程度除了液體添加量以外還受到攪拌速率的影響,兩者呈現非線性關係。在成長模式方面,本研究所發展之預測方式可以釐清目前理論的混淆之處。根據該預測模式發現:同樣的固體與液體材料可以透過適當的操作設計,展現出所有的成長模式。此外,亦發現粒徑集中化的關鍵在於液體分佈集中化,恰與其他儀器相同 [1]。這些發現的應用皆對目前業界有高度應用的價值。最後本論文也提供了數項值得延伸的研究主題與建議。 This thesis investigated the interactions between materials properties and operating conditions in high shear wet granulation. It was found that particles sizes between 1.5 to 85 μm had a significant effect on the granule size growth rate, final average size of granules and the distribution of granule size. The liquid-to-solid (L/S) ratio had a significant effect on the growth rate as well. It was possibly because more binder addition could result in better deformability, which is essential for colliding granules to be adhered onto each other permanently. The effect of L/S on agglomeration depended on the magnitude of impeller speed, and the relationship of each other is not linear. This thesis also proposed a more clarified definition to allocate the accurate boundaries between steady growth, induction behaviour and the rapid growth on the growth regime map. This can enable a better prediction of granulation behaviours. A growth regime map for this thesis was drawn. This map showed that a single system of solid and binder can exhibit five growth behaviours. A pre-requisite of monomodal GSD (granule size distribution) was found the same with that in a rotating drum [1]. Several suggested experiments regarding its microscopic description and other possible investigation plans were proposed in Chapter 5.