中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/26955
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 42694816      Online Users : 1500
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/26955


    Title: Corrosion fatigue behavior of 7050 aluminum alloys in different tempers
    Authors: Lin,CK;Yang,ST
    Contributors: 機械工程研究所
    Keywords: MECHANISMS;WATER
    Date: 1998
    Issue Date: 2010-06-29 18:04:07 (UTC+8)
    Publisher: 中央大學
    Abstract: Corrosion fatigue (CF) experiments, including both high-cycle axial fatigue (S-N curve) and fatigue crack growth (FCG), have been performed on 7050 aluminum alloys in a 3.5 wt% NaCl solution as a function of aging treatment. The results of these environmental tests were compared with those obtained in laboratory air to characterize the effect of aging treatment on CF susceptibility. Fatigue resistance in both peak aged (T6) and overaged (T73) tempers was dramatically reduced by the aqueous chloride environment. The FCG rates for T73 condition were lower than the counterparts for T6 condition in both air and saline solution. 7050-T73 alloy exhibited longer fatigue lives in air but shorter ones in the corrosive environment as compared to the T6 temper. This may be attributed to the formation of more extensive and larger corrosion pits acting as crack nuclei to facilitate crack initiation, in the T73 tempered condition. Comparison of CF and stress corrosion cracking (SCC) results reveals that overaging treatments used to improve grain boundary characteristics and increase the intergranular SCC resistance might not guarantee an equivalent improvement in the resistance to transgranular CF cracking. (C) 1998 Elsevier Science Ltd. All rights reserved.
    Relation: ENGINEERING FRACTURE MECHANICS
    Appears in Collections:[Graduate Institute of Mechanical Engineering] journal & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML494View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明