中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/27252
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 42710076      在线人数 : 1532
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/27252


    题名: Applying real-time control to enhance the performance of nitrogen removal in the continuous-flow SBR system
    作者: Yu,RF;Liaw,SL;Chang,CN;Cheng,WY
    贡献者: 環境工程研究所
    关键词: WASTE-WATER;BATCH REACTOR;SLUDGE
    日期: 1998
    上传时间: 2010-06-29 18:21:16 (UTC+8)
    出版者: 中央大學
    摘要: Conventional operations of wastewater treatment systems use the concepts of steady-state control, and often lead to unnecessary resource consumption for maintaining system functions. Real-time control was examined as a useful approach for improving the operation of wastewater treatment systems. This paper presents the application of real-time control to enhance the performance of nitrogen removal in a continuous-flow SBR system. A real-time control system combining on-line measurement of ORP and pH with Artificial Neural Network (ANN) model was proposed to carry out unsteady-state regulation of the hydraulic retention time of different operation phases. The result of this study shows that the performance of nitrogen removal was enhanced under real-time operation. Compared with fixed-time operation, the retention time of aerobic and anoxic phases can be reduced by approximately 45% and 15.5% in real-time operation respectively, also meaning that 45% aeration energy can be saved. The real-time operation also reveals a higher total nitrogen removal in a relative short retention time. Moreover, some dynamics and kinetics of nitrogen were investigated. These indicate the occurrence of nitrite-type nitrification under real-time operation. This nitrite-type nitrification results in the enhancement of denitrification performance with less carbon resource requirement and higher denitrification efficiency. (C) 1998 Published by Elsevier Science Ltd. All rights reserved.
    關聯: WATER SCIENCE AND TECHNOLOGY
    显示于类别:[環境工程研究所 ] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML541检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明