中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/27682
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 43441054      Online Users : 1607
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/27682


    Title: Neural classification of SPOT imagery through integration of intensity and fractal information
    Authors: Chen,KS;Yen,SK;Tsay,DW
    Contributors: 太空及遙測研究中心
    Keywords: FRACTIONAL BROWNIAN-MOTION;WAVELET TRANSFORM;NATURAL SCENES;SEGMENTATION;TEXTURE;NETWORK
    Date: 1997
    Issue Date: 2010-06-29 18:52:07 (UTC+8)
    Publisher: 中央大學
    Abstract: It is well known that higher dimensional information essentially leads to better accuracy in remotely sensed image classification. This paper is aimed at land cover classification from SPOT-HRV imagery by the integration of multispectral intensity and texture information. In particular, fractal dimensions are extracted using a wavelet transform as image texture. A neural network approach to classification is adopted in this paper. The underlying network is a modified multilayer perceptron trained by a Kalman filtering technique. The main advantages of this network are (1) its non-backpropagation fashion of learning which leads to a fast convergence, (2) a built-in optimization function, and (3) global scale. Saving computer storage space and a fast learning capability are in particular suitable features for remote sensing applications. Correlation analysis was subsequently performed on both the intensity and fractal images. It was found that fractal information significantly improves the discrimination capability of heterogeneous area such as in urban regions, while it slightly degrades accuracy for homogeneous areas, such as open water. The overall classification performance is superior to results obtained using reflectance only. Improvements over heterogeneous areas are demonstrated.
    Relation: INTERNATIONAL JOURNAL OF REMOTE SENSING
    Appears in Collections:[Center for Space and Remote Sensing Research ] journal & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML482View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明