English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 43207629      線上人數 : 1202
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/27696


    題名: A DYNAMIC LEARNING NEURAL-NETWORK FOR REMOTE-SENSING APPLICATIONS
    作者: TZENG,YC;CHEN,KS;KAO,WL;FUNG,AK
    貢獻者: 太空及遙測研究中心
    關鍵詞: CLASSIFICATION
    日期: 1994
    上傳時間: 2010-06-29 18:52:27 (UTC+8)
    出版者: 中央大學
    摘要: The neural network learning process is to adjust the network weighs to adapt the selected training data. Based on the polynomial basis function (PBF) modeled neural network that is a modified multilayer perceptrons (MLP) network, a dynamic learning algorithm (DL) is proposed in this paper. The presented learning algorithm makes use of Kalman filtering technique to update the network weights, in the sense that the stochastic characteristics of incoming data sets are implicitly incorporated into the network. The Kalman gains which represent the learning rates of the network weights updating are calculated by using the U-D factorization. By concatenating all of the network weights at each layer to form a long vector such that it can be updated without propagating back, the proposed algorithm improves the performance of convergence to which the back-propagation (BP) learning algorithm often suffers. Numerical illustrations are carried out using two categories of problems: multispectral imagery classification and surface parameters inversion. Results indicates the use of Kalman filtering algorithm not only substantially increases the convergence rate in the learning stage, but also enhances the separability for highly nonlinear boundaries problems, as compared to BP algorithm, suggesting that the proposed DL neural network provides a practical and potential tool for remote sensing applications.
    關聯: IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
    顯示於類別:[太空及遙測研究中心] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML760檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明