中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/27802
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 42695209      在线人数 : 1476
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/27802


    题名: Simultaneous selection for homogeneous multinomial populations based on entropy function: An empirical Bayes approach
    作者: Gupta,SS;Leu,LY;Liang,TC
    贡献者: 統計研究所
    日期: 1996
    上传时间: 2010-06-29 19:33:56 (UTC+8)
    出版者: 中央大學
    摘要: Consider k independent m-cell multinomial populations pi(1),...,pi(k), where pi(i) has the associated cell probability vector (p) under tilde(i) = (p(il),...,p(im)), i = 1,...,k. The entropy theta(i) = theta((p) under tilde p(i)) = -Sigma(j=1)(m)p(ij) log p(ij) is used as a measure of homogeneity of the population pi(i). A Bayes selection rule relative to the Dirichlet prior distribution D-m(alpha(1),...,alpha(m)) is obtained for selecting all homogeneous populations compared with a standard theta(0). When the values of the parameters alpha(1),...,alpha(m) are unknown, an empirical Bayes selection rule is proposed and its corresponding asymptotic optimality is investigated. It is shown that the proposed empirical Bayes selection rule is asymptotically optimal relative to the class of Dirichlet prior distributions, and the associated regret risk converges to zero with a convergence rate of order O(exp(-tau k + ln k)) for some positive constant tau = tau(alpha(1),...,alpha(m)).
    關聯: JOURNAL OF STATISTICAL PLANNING AND INFERENCE
    显示于类别:[統計研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML394检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明