中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/28015
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 42705937      Online Users : 1310
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/28015


    Title: Oscillation theorems for second-order half-linear differential equations
    Authors: Hsu,HB;Yeh,CC
    Contributors: 數學研究所
    Date: 1996
    Issue Date: 2010-06-29 19:40:13 (UTC+8)
    Publisher: 中央大學
    Abstract: Oscillation criteria for the second-order half-linear differential equation [r(t)\x'(t)\(alpha-1)x'(t)]' + p(t)\x(t)\(alpha-1)x(t) = 0, t greater than or equal to t(0) are established, where alpha > 0 is a constant and integral(t)(infinity) p(s) ds exists for t is an element of [t(0), infinity). We apply these results to the following equation: (i=1)Sigma(N) D-i(\Du(x)\(n-2)D(i)u(x)) + c(\x\)\u(x)\(n-2)u(x) = 0, x is an element of Omega(a), where D-i = partial derivative/partial derivative x(i), D = (D-1,..., D-N), Omega(a) = {x is an element of IR(N) : \x\ greater than or equal to a} is an exterior domain, and asi,c is an element of C([a, infinity),IR), n > 1 and N greater than or equal to 2 are integers. Here, a > 0 is a given constant.
    Relation: APPLIED MATHEMATICS LETTERS
    Appears in Collections:[Graduate Institute of Mathematics] journal & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML381View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明