中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/29128
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42717566      線上人數 : 1507
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/29128


    題名: On the application of a spatial chaotic model for detecting landcover changes in synthetic aperture radar images
    作者: Chou,NS;Tzeng,YC;Chen,KS;Wang,CT;Fan,KC
    貢獻者: 資訊工程研究所
    關鍵詞: UNSUPERVISED CHANGE DETECTION;MULTITEMPORAL SAR IMAGES;MISREGISTRATION;NOISE
    日期: 2009
    上傳時間: 2010-06-29 20:14:23 (UTC+8)
    出版者: 中央大學
    摘要: We present a change detection method for terrain covers from multi-temporal SAR images based on a spatial chaotic model which is known to adequately characterize the coherent process of SAR imaging. The major problem of SAR change detection rises from both the presence of speckle noise and the pixel mis-registration that are commonly seen in the remote sensing image. By means of chaotic model, we first transform the images to fractal domain and then perform the CFAR detection. Simulated tests are conducted to quantitatively evaluate the impacts of these two major error sources on detection rate. Results from satellite SAR for landcover change detection clearly show that the proposed algorithm not only the speckle noise can be effectively suppressed without scarifying the spatial resolution; the excruciating mis-registration error was taken into account and removed.
    關聯: JOURNAL OF APPLIED REMOTE SENSING
    顯示於類別:[資訊工程研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML509檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明