中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/29137
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 42717368      在线人数 : 1545
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/29137


    题名: A genetic algorithm for MRF-based segmentation of multi-spectral textured images
    作者: Tseng,DC;Lai,CC
    贡献者: 資訊工程研究所
    关键词: MARKOV RANDOM-FIELD;UNSUPERVISED SEGMENTATION;COLOR IMAGES;CLASSIFICATION;RELAXATION;MODELS
    日期: 1999
    上传时间: 2010-06-29 20:14:36 (UTC+8)
    出版者: 中央大學
    摘要: A segmentation approach based on a Markov random field (MRF) model is an iterative algorithm; it needs many iteration steps to approximate a near optimal solution or gets a non-suitable solution with a few iteration steps. Tn this paper, we use a genetic algorithm (GA) to improve an unsupervised MRF-based segmentation approach for multispectral textured images. The proposed hybrid approach has the advantage that combines the fast convergence of the MRF-based iterative algorithm and the powerful global exploration of the GA. In experiments, synthesized color textured images and multi-spectral remote-sensing images were processed by the proposed approach to evaluate the segmentation performance. The experimental results reveal that the proposed approach really improves the MRF-based segmentation for the multi-spectral textured images. (C) 1999 Elsevier Science B.V. All rights reserved.
    關聯: PATTERN RECOGNITION LETTERS
    显示于类别:[資訊工程研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML446检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明