English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42702191      線上人數 : 1417
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/29150


    題名: Fault-free Hamiltonian cycles in faulty arrangement graphs
    作者: Hsieh,SY;Chen,GH;Ho,CW
    貢獻者: 資訊工程研究所
    關鍵詞: HYPERCUBES;NETWORKS;DEBRUIJN;MESHES;RINGS;TREES
    日期: 1999
    上傳時間: 2010-06-29 20:14:55 (UTC+8)
    出版者: 中央大學
    摘要: The arrangement graph A(n,k), which is a generalization bf the star graph (n - k = 1), presents more flexibility than the star graph in adjusting the major design parameters: number of nodes, degree, and diameter. Previously, the arrangement graph has proved Hamiltonian. In this paper, we further show that the arrangement graph remains Hamiltonian even ii it is faulty. Let \F-e\ and \F-v\ denote the numbers of edge faults and vertex faults, respectively. We show that A(n,k) is Hamiltonian when 1) (k = 2 and n - k greater than or equal to 4, or k greater than or equal to 3 and n - k greater than or equal to 4 + inverted right perpendicular k/2 inverted left perpendicular), and \F-e\ less than or equal to k(n - k) - 2, or 2) k greater than or equal to 2, n - k greater than or equal to 2 + inverted right perpendicular k/2 inverted left perpendicular, and \F-e\ less than or equal to k(n - k - 3) - 1, or 3) k greater than or equal to 2, n - k greater than or equal to 3, and \F-e\ less than or equal to k, or 4) n - k greater than or equal to 3 and \F-v\ less than or equal to n - 3, or 5) n - k greater than or equal to 3 and \F-v\ + \F-e\ less than or equal to k. Besides, for A(n,k) with n - k = 2, we construct a cycle of length at least 1) n!/(n-k)! - 2 if \F-e\ less than or equal to k - 1, or 2) n!/(n-k)! - \F-v\ - 2(k -1) if \F-v\ less than or equal to k - 1, or 3) n!/(n-k)! - \F-v\ - 2(k - 1) if \F-e\ + \F-v\ less than or equal to k - 1, where nl/(n-k)l is the number of nodes in A(n,k).
    關聯: IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
    顯示於類別:[資訊工程研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML492檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明