English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42697070      線上人數 : 1382
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/29185


    題名: The recognition of geodetically connected graphs
    作者: Chang,JM;Ho,CW
    貢獻者: 資訊工程研究所
    關鍵詞: ALGORITHMS;HYPERGRAPHS
    日期: 1998
    上傳時間: 2010-06-29 20:15:48 (UTC+8)
    出版者: 中央大學
    摘要: Let G = (V,E) be a graph with vertex set V of size n and edge set E of size m. A vertex nu is an element of V is called a hinge vertex if the distance of any two vertices becomes longer after ii is removed. A graph without hinge vertex is called a hinge-free graph. In general, a graph G is k-geodetically connected or k-GC for shea if G can tolerate any k-1 vertices failures without increasing the distance among all the remaining vertices. In this paper, we show that recognizing a graph G to be k-GC for the largest value of k can be solved in O(nm) time. In addition, more efficient algorithms for recognizing the L-GC property on some special graphs are presented. These include the O(n + m) time algorithms on strongly chordal graphs (if a strong elimination ordering is given), ptolemaic graphs, and interval graphs, and an O(n(2)) time algorithm on undirected path graphs (if a characteristic tree model is given). Moreover, we show that if the input graph G is not hinge-free then finding all hinge vertices of G can be solved in the same time complexity on the above classes of graphs. (C) 1998 Elsevier Science B.V.
    關聯: INFORMATION PROCESSING LETTERS
    顯示於類別:[資訊工程研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML375檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明