中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/29191
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 42713545      在线人数 : 1366
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/29191


    题名: A genetic sparse distributed memory approach to the application of handwritten character recognition
    作者: Fan,KC;Wang,YK
    贡献者: 資訊工程研究所
    日期: 1997
    上传时间: 2010-06-29 20:15:57 (UTC+8)
    出版者: 中央大學
    摘要: Kanerva's Sparse Distributed Memory (SDM) is one of the self-organizing neural networks that mimic closely the psychological behavior of the human brain. In this paper, a Genetic Sparse Distributed Memory (GSDM) model that combines SDM with genetic algorithms is proposed. The proposed GSDM model not only maintains the advantages of both SDM and genetic algorithms, but also has higher memory utilization to improve the recognition rate. Its effective performance is also verified by application to Optical Character Recognition (OCR). Experimental results reveal the feasibility and validity of the proposed model. (C) 1997 Pattern Recognition Society. Published by Elsevier Science Ltd.
    關聯: PATTERN RECOGNITION
    显示于类别:[資訊工程研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML468检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明