中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/29349
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 42717023      Online Users : 1509
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/29349


    Title: Invariant handwritten Chinese character recognition using fuzzy ring data
    Authors: Tseng,DC;Chiu,HP;Cheng,JC
    Contributors: 電機工程研究所
    Keywords: ORDER NEURAL NETWORKS;PATTERN-RECOGNITION;OBJECT RECOGNITION;ROTATION;CLASSIFICATION;ALGORITHM;SYSTEM;REPRESENTATIONS;TRANSLATION;SCALE
    Date: 1996
    Issue Date: 2010-06-29 20:22:26 (UTC+8)
    Publisher: 中央大學
    Abstract: An invariant handwritten Chinese character recognition system is proposed. Characters can be in arbitrary location, scale and orientation. Five invariant features are employed in this study. The first four features are used for preclassification to reduce matching time. The last feature, ring data, constructs ring-data vectors to characterize character samples and constructs weighted ring-data matrices to characterize characters to further reduce matching time. Fuzzy membership functions are defined based on these two characteristics to match characters. A character set is constructed from 200 handwritten Chinese characters and comprising several different samples of each character in arbitrary orientations. The performance of the proposed invariant features and fuzzy matching is verified through extensive experiments with the character set: (i) the performance of the proposed fuzzy matching is superior to that of two traditional statistical classifiers; (ii) the performance of the fuzzy ring-data vector is clearly superior to that of the fuzzy ring-data matrix, but the latter needed less matching time; (iii) the preclassification reduces the fuzzy matching time and improves the recognition rate; and (iv) the performance of the proposed invariant features is clearly superior to that of moment invariants.
    Relation: IMAGE AND VISION COMPUTING
    Appears in Collections:[Graduate Institute of Electrical Engineering] journal & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML437View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明