English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 43211857      線上人數 : 1195
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/29645


    題名: A partitioned portfolio insurance strategy by a relational genetic algorithm
    作者: Chen,JS;Lin,YT
    貢獻者: 資訊管理研究所
    日期: 2009
    上傳時間: 2010-06-29 20:37:14 (UTC+8)
    出版者: 中央大學
    摘要: This paper proposes a new portfolio insurance (PI) strategy named partitioned portfolio insurance (PPI) strategy and a new relation-based genetic algorithm named relational genetic algorithm (RGA) to optimize the proposed PPI strategy. Our PPI strategy extends the traditional PI strategy to become a more aggressive one. In our PPI strategy, we attempt to correctly partition the portfolio into several similar sub-portfolios and then insure the sub-portfolios individually. It not only avoids the downside risk, but also further explores the upside profit successfully. In addition, our RGA which adopts a relational encoding and has a set of problem-independent operators is designed to solve the induced portfolio partitioning problem. The relational encoding eliminates the redundancy of previous GA representations for partitioning problems and improves the performance of genetic search. The problem-independent operators we redesigned manipulate the genes without requiring specific heuristics in the process of evolution. Moreover, our RGA works without requiring a preset number of subsets in advance. Experiments for developing optimized PPI strategies by RGA are performed. Experimental results show that our optimized PPI strategies are significantly better than the traditional PI strategy and our RGA works well for solving the portfolio partitioning problem. (C) 2008 Elsevier Ltd. All rights reserved.
    關聯: EXPERT SYSTEMS WITH APPLICATIONS
    顯示於類別:[資訊管理研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML775檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明