中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/29660
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 43440025      線上人數 : 1443
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/29660


    題名: Feature selection in bankruptcy prediction
    作者: Tsai,CF
    貢獻者: 資訊管理研究所
    關鍵詞: SUPPORT VECTOR MACHINES;NEURAL-NETWORKS;GENETIC ALGORITHM;FINANCIAL RATIOS;BANK FAILURE;CLASSIFICATION;PARAMETERS;OPTIMIZATION;BUSINESS;FIRMS
    日期: 2009
    上傳時間: 2010-06-29 20:37:35 (UTC+8)
    出版者: 中央大學
    摘要: For many corporations, assessing the credit of investment targets and the possibility of bankruptcy is a vital issue before investment. Data mining and machine learning techniques have been applied to solve the bankruptcy prediction and credit scoring problems. As feature selection is an important step to select more representative data from a given dataset in data mining to improve the final prediction performance, it is unknown that which feature selection method is better. Therefore, this paper aims at comparing five well-known feature selection methods used in bankruptcy prediction, which are t-test, correlation matrix, stepwise regression, principle component analysis (PCA) and factor analysis (FA) to examine their prediction performance. Multi-layer perceptron (MLP) neural networks are used as the prediction model. Five related datasets are used in order to provide a reliable conclusion. Regarding the experimental results, the t-test feature selection method outperforms the other ones by the two performance measurements. (C) 2008 Elsevier B.V. All rights reserved.
    關聯: KNOWLEDGE-BASED SYSTEMS
    顯示於類別:[資訊管理研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML879檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明