本研究主要是利用磁場輔助微電化學銑削微流道與3D微結構之研究。而本文大致分為兩大部份: 第一部份係運用螺旋電極進行微電化學銑槽加工特性之研究,並以銑槽加工後槽之形狀精度,與傳統圓柱電極銑槽加工作比較,結果得知微槽之擴槽量及槽深都以螺旋電極表現較佳,本研究亦運用螺旋電極針對各製程參數進行微電化學銑槽加工特性探討,實驗結果顯示雖然螺旋電極可改善加工精度,但由於加工進給速度難以提升,致使該技術於實務加工上受到限制,因此進行本論文第二部份之研究。 第二部份為磁場輔助微電化學銑削加工之研究,主要是利用勞倫茲力效應的方式,增加銑削加工之進給速度。參數實驗結果顯示,經由磁場輔助微電化學銑削後,最大之進給速度已能提升至8μm/sec,並且加工後槽寬尺寸與槽深尺寸降為344μm及98μm,當Y軸進給速度由1μm/sec增加至8μm/sec時,表面粗糙度由 Ra 1.6μm、Rmax 6.5μm降為Ra 0.36μm、Rmax 4.47μm,並將較佳參數運用於磁場輔助微電化學銑削幾何形狀微流道與3D微結構。故在磁場輔助之情形下,有較佳的加工效率,且當Y軸進給速度提升至8μm/sec時,具有較佳的加工精度及表面粗糙度。 The study presents micro channels and 3D micro structures are milled by using magnetic field-assisted electrochemical method. The study includes two major parts. The first part is electrochemical micro milling by using a helical tool. The shape accuracy of the micro groove machined by using the helical tool and cylindrical tool is compared. The results reveal that smaller groove width and depth expanding can be obtained by using a helical tool according to various parameters. Although the machining accuracy can be improved by using the helical tool, the feed rate still is not easily to rise. The second part is magnetic field-assisted micro electrochemical milling to overcome the above issue. The effect of the Lorentz force is applied in the process. According to the experimental result, the feed rate can be increased to 8 μm/sec during the magnetic field-assisted micro electrochemical milling. Furthermore, the groove width and groove depth are reduced to 344 μm and 98 μm respectively. The surface roughness also is reduced from Ra 1.6μm (Rmax 6.5μm) to Ra 0.36μm, (Rmax 4.47μm). The better parameters are also used in magnetic field-assisted electrochemical milling for micro channel and 3D micro structures machining. The study shows that the magnetic field-assisted approach indeed can improve the machining efficiency, accuracy and surface roughness.