連續流循序批分式活性污泥系統(Continuous-Flow Sequencing Batch Reactor, CFSBR)在自動監測控制系統之發展上,主要係利用ORP與pH監測參數發生之折點變化,作為即時監控系統操作程序之反應操作終點之依據。然而過去之厭氧相控制策略,乃採取一固定操作時間之操作方式,並無利用系統監測參數作為轉相之判斷,此法易造成系統效率與效益之降低。本研究為使CFSBR系統所有操作程序皆能達線上自動化操控之目的,故擬以pH與ORP反應特徵點,建立厭氧相即時控制策略,並進一步修正沉澱/排水/排泥相控制策略,且在馴養之初即以此線上自動控制策略進行操作。由研究結果指出,以即時控制方式進行馴養將得到與定時控制方式相似之除碳與除磷成效與放流水水質;但利用ORP轉相特徵點進行反應終點之判斷,易造成反應槽中氨氮濃度累積,使系統達到氨氮放流水水質標準之時間較固定操作方式為長。另一方面,觀察系統厭氧相釋磷速率與pH、ORP反應曲線發現,於釋磷速率反曲點,pH曲線之反應終點特徵較ORP曲線為早,而由此pH反應終點特徵作為厭氧轉相之判斷,在不影響處理水水質下,將能進一步節省厭氧相操作時間,達更佳之處理效益。而由ORP下降量與比釋磷量之分析結果發現,兩者具有相當高之相關性。利用兩者之關係式,可直接以ORP下降量,求得系統釋磷量,而藉由訂定適當之比釋磷量達成值,則可作為厭氧相終點控制之另一判斷依據。 The continuous-flow sequencing batch reactor (CFSBR) is capable of removing the organic carbonaceous materials, biological nutrients such as nitrogen and phosphorus by cycling anaerobic, aerobic, anoxic, settling and discharge phases. Development at automatically monitoring & controllable system , the optimal procedure of most phases were usually executed by the pH/ORP real-time control approaches. Therefore, this study tries to set up the method for on–line measuring anaerobic phase break–point judged by ORP and pH trend-characteristic value. However, according to the experiment result, using the pH trend-characteristic value to judge anaerobic phase break-point would need less time than using the ORP trend-characteristic value. In addition, the ORP subtract value have a very high correlation with Specific liberation phosphorus. Using this equation could calculate the liberation phosphorus from on-line ORP detector. And according to this equation and concluding a suitable liberation phosphorus value could provide an additional judgment of anaerobic phase terminal point.