中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/43088
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 42711589      Online Users : 1421
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/43088


    Title: 嵌入Lagrangian曲面之Isotopy問題;Isotopy Problems of Embedded Lagrangian Surfaces
    Authors: 姚美琳
    Contributors: 數學系
    Keywords: 數學類
    Date: 2006-07-01
    Issue Date: 2010-12-06 16:19:56 (UTC+8)
    Publisher: 行政院國家科學委員會
    Abstract: 過去二十年來, 眾多數學家們積極地投入有關辛流形及其 Lagrangian 子流形上各類性質之研究. 其中屬於辛拓樸領域的一類主要研究課題便是有關四維辛流形中之嵌入 Lagrangian 曲面之光滑 isotopy 及 Lagrangian isotopy 問題. 雖然截至目前為止有關此分類問提已獲致相當多的進展, 但即便在基本如四維辛空間及曲面之上切叢之類的辛流形上, 距離一個完全甚或滿意的解答仍是相當的遙遠. 鑑於此類問題的重要性, 本計畫將專致於四維空間及虧格 (genus) 大於1之曲面上之上切叢中之Lagrangian 曲面之 isotopy 問題研究. 其目的是要針對前述之兩種 isotopy 問題上得到更進一步的突破. 在研究方法上將運用前人之相關結果及各類工具. 如 Lagrangian 曲面之不變量,全純曲線, surgery, almost complex structures, totally real 曲面等. 此外, 本計劃主持人所建構有關 Lagrangian 曲面分類之兩項不變量也將運用於本計畫中. 本計劃屬辛拓樸領域. 辛拓樸處於多種數學領域之交會地帶, 諸如微分拓樸, 代數幾何, 大域分析及動態系統等. 本計畫如執行, 其結果不僅有助吾人進一步瞭解四維辛流形有關 Lagrangian 曲面之拓樸性質, 亦將對其他相關數學領域有所貢獻。 研究期間:9411 ~ 9507
    Relation: 財團法人國家實驗研究院科技政策研究與資訊中心
    Appears in Collections:[Department of Mathematics] Research Project

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML324View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明