English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42746495      線上人數 : 2273
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/43315


    題名: 隨機旅行時間下小客車共乘配對模式暨求解演算法之研究;A Carpool Matching Model and Solution Algorithms under Stochastic Travel Times
    作者: 張聲傑;Sheng-chieh Chang
    貢獻者: 土木工程研究所
    關鍵詞: 啟發解法;多重貨物網路流動問題;時空網路;隨機性旅行時間;小客車共乘;Heuristics;Multiple commodity network flow problem;Time-space network;Stochastic travel times;Carpool
    日期: 2010-07-22
    上傳時間: 2010-12-08 13:34:14 (UTC+8)
    出版者: 國立中央大學
    摘要: 近年來台灣地區交通量成長迅速,個人小客車擁有比例與使用頻率亦日益增加,透過共乘制度除了可提高小客車之乘載率,紓解都會區交通雍塞與停車問題,並且可降低因全球油價上漲造成旅行成本增加所帶來的衝擊,以及達到節能減碳等優點。然而,目前實務上小客車的共乘配對上,多採用人工經驗進行排程規劃,不僅費時且缺乏系統分析,使得共乘的績效降低。過去小客車共乘的研究多以平均旅行時間為依據,進行共乘配對與排程,此作法未考量實際旅行時間的隨機性。在實際共乘進行時若隨機旅行時間造成之擾動過大,將使原規劃的配對與排程結果失去最佳性。因此,考量隨機性旅行時間之影響,建構一隨機性小客車共乘配對模式,期能提供一有效的規劃輔助工具,以幫助決策者有效地進行規劃。 本研究利用時空網路流動技巧建立一此隨機模式,模式中包含供車群車流、供車群人流與不供車群人流網路,以定式共乘群在時空中的流動與配對。本研究進一步修改隨機模式之旅行時間為平均旅行時間,建立一確定性模式。此兩模式可定式為特殊之整數多重貨物網路流動問題,屬NP-hard問題。為面臨實務之大型問題難以在有限時間內僅用數學規劃軟體求解,本研究發展一啟發式演算法以有效地求解問題。此外,本研究亦發展一模擬評估方法,以評估兩模式於實際共乘進行時之績效。最後為評估本研究中模式與演算法之實用績效,以實際狀況資料及合理假設產生測試例,進行本研究之範例測試並針對不同參數進行敏感度分析,結果顯示本模式與演算法在實用上可有效的運用,並進一步提出結論與建議。 Respecting traffic volume has significantly grown and private cars become more popular than before in Taiwan. Therefore, carpool that enhances the car occupancy rate can not only relieve traffic congestion, but also reduce the travel cost which comes from the price of global petroleum going up, even save energy. As regards in Taiwan, carpool matching is manually performed by planning personnels with experience in current practice, without a systematic analysis. Such a manual approach is considered to be inefficient and ineffective. In other words, stochastic disturbances arising from variations in car travel times in actual operations are neglected. In the worst scenario, where car travel times fluctuate wildly during operations, the planned schedule could be disturbed enough to lose its optimality. Therefore, focusing on many-to-many origin-destination (OD), we constructed a stochastic carpool matching model that considers the influence of stochastic travel times. The matching model is expected to be an effective tool for the planner to solve carpool members matching. We employed network flow techniques to construct the stochastic carpool matching model, including multiple CVG (a carpool member group who can provide a vehicle) vehicle-flow networks, CVG passenger-flow networks and multiple CNG (a carpool member group who cannot provide any vehicle) passenger-flow networks to formulate the flows of CVGs and CNGs in the dimensions of time and space. Then, we modified the stochastic travel times in the stochastic carpool matching model as an average travel time to develop a deterministic scheduling model. The two models are formulated as special integer multiple commodity network flow problems, which are characterized as NP-hard. Since the problem sizes are expected to be huge in real practice, the models are difficult to be solved in a reasonable time. Therefore, we also developed a heuristic algorithm for efficiently solving matching problems. In addition, to evaluate the stochastic and deterministic carpool matching models, we also developed a simulation-based evaluation method. The performance of the solution method in practice is evaluated by carrying out a case study using real data and suitable assumptions, and then sensitive analysis is performed for different parameters. The test results show the model to be good and that the solution method could be useful in practice.
    顯示於類別:[土木工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML692檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明