中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/43907
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 42710940      在线人数 : 1402
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/43907


    题名: Hardy spaces associated to para-accrective functions Hardy spaces associated to para-accrective functions
    作者: 陳哲楷;Zhe-kai chen
    贡献者: 數學研究所
    关键词: Calderon-Zygmund算子;哈地空間;仿可接收函數;Calderon-Zygmund operator;para-accrective function;Hardy spaces
    日期: 2010-07-05
    上传时间: 2010-12-08 14:26:17 (UTC+8)
    出版者: 國立中央大學
    摘要: 這篇論文主要目的,是證明 Calderon-Zygmund 算子在和 para-accretive 函數相關的 Hardy 空間 H^{p}_{b} 上的有界性。在第二節裡,我們首先建構了主要的工具,一個離散形式的 Calderon 表示定理。而在第三節內我們則利用 Little-Paley g 函數定義了和 para-accretive 函數相關的 Hardy 空間。接者透過Plancherel-Polya 型的不等式去保證這空間的定義是合理的。進第一步地,在最後一節我們證明了當 Calderon-Zygmund 算子加上T^{*}(b)=0 這條件下,即能保證這個算子是從經典的 H^{p} 到H^{p}_{b} 是有界的。 In this paper, the main purpose is to claim the boundedness of the Calderon-Zygmund operator on the Hardy spaces H^{p}_{b} associated to para-accretive functions b for frac{n}{n+varepsilon}<pleq1. We first construct the main tool in section 2, the discrete version Calderon-type reproducing formula. In section 3, we established the Hardy spaces H^{p}_{b} associated to para-accretive functions b is defined by the Little-Paley g function. Moreover, the new Hardy spaces H^{p}_{b} is well-defined by the Plancherel-Polye type inequality. Further, in last section, we show that the boundedness of the Calderon-Zygmund operator T with T^{*}(b)=0 from the classical Hardy spaces H^{p} to H^{p}_{b} for frac{n}{n+varepsilon}<pleq1.
    显示于类别:[數學研究所] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML633检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明