本論文的目的,是自行設計與製作一套可應用於電離層電漿量測的離子探測器,量測離子溫度、離子流速等資訊。透過國立中央大學太空科學研究所的太空電漿模擬艙,產生近似電離層的電漿環境,進行離子探測器的測試與分析。由實驗結果中,我們發現太空電漿模擬艙產生的電漿包含兩個帶著不同的流速的離子流,其中一個由於流速過大,在有限的掃描電位下,無法觀測到明顯的離子電流變化,以致於無法分析其特性;另外一個離子流,可在掃描電位的調變下獲得離子流量的變化。但由於電漿電位的不確定,難以清楚地分析其電漿特性。配合離子流量理論的計算與離子探測器幾何結構的資訊,藉由新設置的真空旋轉平台在不同角度下所量測到的離子電流變化,即可推算離子的溫度與流速。我們發現電漿源的離子溫度約為 1500 K,離子流速約為 370 m/s。本實驗亦驗證國人自製科學酬載並應用於太空電漿量測的可行性。未來可設置在探空火箭或衛星上,提升國人的太空科技實力。The purpose of this thesis is to design and develop an ion probe system to obtain ionospheric plasma parameters like ion temperature, ion flow speed etc. The Space Plasma Simulation Chamber located in the Institute of Space Science of National Central University was used to test and verify the functions of the ion probe system. In the experiment, we found back diffusion plasma source of the chamber produces two groups of plasma flow. One of the flow speed is too high to cut down by the limited grid potential in the ion probe. I-V analysis is unable to perform in this case. Although It can be analyzed in the other plasma flow, the unknown of plasma potential makes it difficult to find out the parameters from the I-V curves. By using the turn table to measure the ion saturation current in different angles, ion temperature and ion flow speed can be carefully analyzed by ion flux theory and geometry of the probe. It was found that the ion temperature is about 1500 K and the flow speed is about 370 m/s from the source. The experiment also improves the ability of in-house ion probe system for future sounding rocket and satellite missions and the plasma diagnostics technology in Taiwan.