English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42722987      線上人數 : 1276
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/44651


    題名: 毫米波寬頻高增益晶片型整流天線/主動式整合天線發射器暨濾波器之研製;Millimeter-wave Broadband and High Gain On-Chip Rectifying Antenna / Active-Integrated Antenna Transmitter and Filter Design
    作者: 陳毅山;I-Shan Chen
    貢獻者: 電機工程研究所
    關鍵詞: 晶片天線;主動式天線;有限接地共平面波導;單晶微波積體電路;互補金屬氧化物半導體;壓控整合天線振盪器;擬態高速移動電子電晶體;finite-width ground coplanar waveguide;active-integrated antennas;CMOS;voltage-controlled integrated antenna oscillator;monolithic-microwave integrated circuit;pHEMT;On-chip antenna;millimeter-wave
    日期: 2010-07-13
    上傳時間: 2010-12-09 13:51:39 (UTC+8)
    出版者: 國立中央大學
    摘要: 本論文研究方向著重於發展毫米波V頻段寬頻與高增益晶片式天線、整流天線、主動式整合天線及濾波器。這些晶片式天線及濾波器使用砷化鎵與金氧半導體製程來製作,同時可運作於無線個人區域網路(WPAN)、高解析度多媒體介面(HDMI)及無線功率傳輸(WPT)應用。為解決天線整合於有損高介質晶片基板上而無法獲得高天線增益的問題,在本論文中,設計新型改良天線改善了天線輻射場形,同時也獲得到良好的頻寬及天線增益。所提出的設計方法及步驟藉由實作電路與結果分析做相互驗證,皆獲得吻合的成果。本論文設計側邊輻射之晶片天線與國際指標相比較,在天線頻寬、增益、場形前後波瓣比及面積特性上均有最佳的表現,在天線量測驗證上除了一般量測S參數、天線傳輸增益外,更創新建立精確的晶片天線量測平台,其量測包含絕對增益及場形的量測,其高精度絕對增益量測使用三組天線量測方式,可有效扣除天線口徑因子的不確定因素,同時更提升小型化晶片天線量測上的可信度。 一個V頻段創新晶片式偶極天線晶片小型面積達到 0.9 平方毫米。其電壓駐波比為2的頻寬為24 % (55-70 GHz)、一對同樣天線在距離5公分的傳輸增益為-32 dB、天線絕對增益為3.6dBi、場形前後波瓣比為12 dB、電場及磁場平面的半功率波束寬皆為60度。一個高效率雙頻段(35及94 GHz)晶片型整流天線小型面積達到 2.9 平方毫米。電壓駐波比為2的頻寬分別為82 %及41 %、天線增益在35及94 GHz個別為7.4dBi及6.5dBi,其量測的功率轉換效率為53 %及37 %,且天線的輻射功率密度達到30 mW/cm2。此外,一個主動式晶片整合天線小型面積達到 0.61 平方毫米。其高天線增益為7.6 dBi、低相位雜訊在10 MHz的位移為-114 dBc/Hz、且功率消耗僅有9 mW、其中壓控震盪器的優化指數在10 MHz的位移為-181 dBc/Hz、發射器距離接收天線90公分的接收功率為-38dBm。最後,兩個有限地共平面波導低通及帶通濾波器晶片小型面積達到 0.19 平方毫米。其低穿透損耗分別低於0.5 dB及1.5 dB且反射損耗分別大於12 dB及13 dB。此低通及帶通濾波器的1-dB寬頻個別達到70 GHz (0-70 GHz) 與 11 GHz (55-66 GHz)。在低通濾波器95-120 GHz的止帶頻率95-120 GHz至少有大於 20 dB的抑制,另外,帶通濾波器在0-42 GHz 及82-120 GHz也有大於 20 dB的抑制。The purpose of this dissertation is to develop millimeter-wave (MMW) broadband and high gain on-chip antennas, rectifying antenna (rectenna), active-integrated antenna (AIA), and filters in V-band. The antennas and filters are fabricated in standard gallium arsenide (GaAs) and complementary metal-oxide semiconductor (CMOS) technologies and operated for wireless personal area network (WPAN), high-definition multimedia interface (HDMI), and wireless power transmission (WPT) applications. The improved techniques of antenna radiation pattern are demonstrated in this dissertation. The design procedures for these on-chip antennas are verified by practical implementation. The measured results are well agreed with the designs and simulations. Compare with the previous on-chip antennas; the proposed antenna provides endfire radiation patterns with high front-to-back ratio, and demonstrates the better bandwidth and gain performance. The antenna performance is characterized by using S-parameter, two-antenna (identical), three-antenna, and radiation pattern measurement methods for return loss, transmission gain, absolute gain, and radiation patterns. Here, to minimize these uncertainties, a three-antenna measurement technique is employed to obtain the antenna absolute gain of the on-chip antenna. The use of three-antenna method completely eliminates the need of unknown parameter, such as effective aperture, in two-antenna method; therefore, the antenna absolute gain can be accurately measured. A V-band on-chip dipole-based antenna achieves a compact area of 0.9 mm2, a fractional bandwidth of 24 % (55 to 70 GHz, voltage standing wave ratio (VSWR) = 2), a transmission gain of -32 dB (the separated distance R = 5 cm), an absolute gain of 3.6 dBi, a front-to-back ratio of 12 dB, and an half-power beamwidth of 60° in E-plane and H-plane. A high-efficiency dual-band (35/94 GHz) on-chip rectenna presents a fractional bandwidth of 82 % and 41 % (VSWR=2), an antenna gain of 7.4 dBi and 6.5 dBi at the frequencies of 35 GHz and 94 GHz, respectively. The measured power conversion efficiencies (PCEs) are 53 % and 37 % in free space at 35 GHz and 94 GHz, while the incident radiation power density is 30 mW/cm2. The fabricated rectenna occupies a compact area of 2.9 mm2. An on-chip integrated antenna oscillator transmitter performs a high antenna gain of 7.6 dBi and a low phase noise of -114 dBc/Hz at 10 MHz offset at 9 mW power consumption. The figure of merit (FOM) of the voltage controlled oscillator (VCO) is -181 dBc/Hz at 10 MHz offset. The measured receiver power is -38 dBm at separated distance of 90 cm at 66 GHz. The fabricated oscillator-transmitter occupies a compact area of 0.61 mm2. Furthermore, compact on-chip finite-width ground coplanar waveguide (FGCPW) lowpass filter (LPF) and bandpass filter (BPF) demonstrate insertion losses smaller than 0.5 dB and 1.5 dB with return losses of better than 12 dB and 13 dB, respectively. The 1-dB bandwidths of the lowpass filter and bandpass filter are 70 GHz (0-70 GHz) and 11 GHz (55-66 GHz), respectively. The stopband rejections are better than 20 dB from 95 to 120 GHz in the lowpass filter, and from 0 to 42 GHz and 82 to 120 GHz in the bandpass filter. The chip area is very compact of 0.43 × 0.45 mm2.
    顯示於類別:[電機工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML817檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明