中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/45310
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42719571      線上人數 : 1405
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    NCU Institutional Repository > 理學院 > 數學系 > 研究計畫 >  Item 987654321/45310


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/45310


    題名: 有限圖中最大Container問題;On the Maximal Container of Graphs
    作者: 黃華民
    貢獻者: 數學系
    關鍵詞: minimal container;maximal container;spanning container;數學類
    日期: 2007-07-01
    上傳時間: 2010-12-21 17:25:50 (UTC+8)
    出版者: 行政院國家科學委員會
    摘要: 有限無向圖中一個k-container C( u,v ) 定義為k 條從u 至v 內點皆相路徑的集合. k-container C( u,v ) 的長度定義為其中最長的一條路徑的長度. k-container C( u,v ) 的容積: ?C( u,v )? 定義為C( u,v ) 中頂點個數的總和. 因為對連結度為k 的圖中任二點u,v 均可找到一個k-container C( u,v ) , 故研究container 的容積是一個很自然的問題. 若容積是極小的時候, 我們稱之為一個最小container. 反之若容積是極大的時候, 我們稱之為一個最大container. 因為容積永遠不會比所有頂點的個數多. 故當容積等於所有頂點數時, 我們又稱之為一個spanning container 記作 C*( u,v ). 最近十年來, 已有相當多討論最小container的論文. 我們將在本計劃中研究最大container 的相關問題。研究期間:9508 ~ 9607
    關聯: 財團法人國家實驗研究院科技政策研究與資訊中心
    顯示於類別:[數學系] 研究計畫

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML315檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明