English
| 正體中文 |
简体中文
|
全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 43939234 線上人數 : 1383
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by
NTU Library IR team.
搜尋範圍
全部NCUIR
資訊電機學院
電機工程學系
--研究計畫
查詢小技巧:
您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
進階搜尋
主頁
‧
登入
‧
上傳
‧
說明
‧
關於NCUIR
‧
管理
NCU Institutional Repository
>
資訊電機學院
>
電機工程學系
>
研究計畫
>
Item 987654321/45947
資料載入中.....
書目資料匯出
Endnote RIS 格式資料匯出
Bibtex 格式資料匯出
引文資訊
資料載入中.....
資料載入中.....
請使用永久網址來引用或連結此文件:
http://ir.lib.ncu.edu.tw/handle/987654321/45947
題名:
新穎之改善語者模型調適法與結構風險最小化分類器的應用
;
The Application of Novel Speaker Model Adaptation and Structural Risk Minimized Classifier
作者:
莊堯棠
貢獻者:
電機工程學系
關鍵詞:
資訊科學--軟體
日期:
2008-07-01
上傳時間:
2010-12-28 15:54:06 (UTC+8)
出版者:
行政院國家科學委員會
摘要:
一般藉由背景模型調適出語者模型的方法中,最普遍使用的為最大事後機率估測法,但此方法在有限的調適語料下,部份高斯分佈的模型參數因為無法獲得充分的調適語料,而未能進一步調整參數,這將使得語者模型喪失了鑑別的能力,並使得整個語者辨識的效能降低。為了解決這樣的問題,幾種有效的方法,如參考語者權重調適法、特徵語音調適法及最大相似度模型插入法等,主要是將目標語者模型運用其他參考語者的聲學模型做線性組合,然而其模型參數會受限於參考語者所生成的空間,因此亦限制其鑑別能力而降低語者辨識的效能。所以此計畫中,我們將結合最大事後機率估測法與參考語者權重調適法之所長,使模型參數的調適上能依據不同的調適語料量作調整,並建立模型參數的階層式關係,讓語者模型調適有最適當的處理。另外由於參考語者權重調適法在參考空間建立時,參考語者的選取會對其調適結果產生較大影響,針對於此我們將運用有別於樹狀結構方法的選取方式,以最大相似度選取參考語者及支撐向量機作動態選取參考的語者,藉此兩種方法將對其選取之參考語者最佳化,使參考語者權重調適法在調適時有更好的效果。最後我們亦將支撐向量機延伸至語者的辨識器上,以期再提升語者辨識的效能。 研究期間:9608 ~ 9707
關聯:
財團法人國家實驗研究院科技政策研究與資訊中心
顯示於類別:
[電機工程學系] 研究計畫
文件中的檔案:
檔案
描述
大小
格式
瀏覽次數
index.html
0Kb
HTML
351
檢視/開啟
在NCUIR中所有的資料項目都受到原著作權保護.
社群 sharing
::: Copyright National Central University. | 國立中央大學圖書館版權所有 |
收藏本站
|
設為首頁
| 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
DSpace Software
Copyright © 2002-2004
MIT
&
Hewlett-Packard
/
Enhanced by
NTU Library IR team
Copyright ©
-
隱私權政策聲明