中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/47756
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 42666082      Online Users : 2536
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/47756


    Title: 加壓型固態氧化物燃料電池性能與阻抗之定量量測與分析;Quantitative Measurements of Cell Performance and Electrochemical Impedance Spectra for Pressurized SOFC
    Authors: 張軒維;Hsuan-wei Chang
    Contributors: 機械工程研究所
    Keywords: 加壓型固態氧化物燃料電池;流場均勻度、功率密度、阻抗頻譜;Solid oxide fuel cells;rib-channel interconnect
    Date: 2011-08-26
    Issue Date: 2012-01-05 12:34:15 (UTC+8)
    Abstract: 本論文實做一套高壓雙腔室固態氧化物燃料電池(solid oxide fuel cells, SOFC)之性能測試平台,並針對兩組除了流場板設計不同,其他組件與操作條件完全一樣的單電池堆,進行電池性能與電化學阻抗頻譜(electrochemical impedance spectra, EIS)的定量量測。測試平台之關鍵設備為一套雙腔室壓力容器,其內腔室為高壓可程式控制高溫爐,外腔室為加壓容器。單電池堆是由陽極支撐電池片、crofer-22-APU框架、集電層以及一對肋條流道之流場板層層堆疊而成。單電池堆組裝完成後,會以陶瓷基座包覆保護,並置入測試平台之內腔室,故可進行一系列的高溫高壓性能測試。為了能讓單電池堆安全且穩定地在加壓條件下操作,本研究亦建立一套標準的實驗流程。實驗結果顯示,增加SOFC操作壓力有助於提升電池性能,但壓力效應與電池性能的關係為非線性。當操作壓力(P)由1 atm增加至3 atm,功率密度約增加22%,但當P由1 atm增加至5 atm,功率密度則增加30%。此結果與EIS所量測的結果吻合,當P由1 atm增加至3 atm,電池極化阻抗可被明顯的抑制,但當P持續增加至5 atm,則其阻抗頻譜幾無變化。此外,本研究亦發現,在常壓條件下,單電池堆若採用本團隊過去所提出的加設導流條之優化流場板設計,其操作於0.6 V之功率密度可比未加導流條設計約高13%。當操作壓力增加至5 atm,兩者功率密度之差異則增加至16%,顯示在高壓條件下,流場均勻度效應仍是影響電池性能的重要因素。本論文所獲致之結果應有助於國內開發SOFC與氣渦輪機結合之複合式發電系統。 This thesis presents the implementation of a high-pressure double-chamber solid oxide fuel cell (SOFC) testing platform for quantitatively measuring cell performance and electrochemical impedance spectra (EIS) of two sets of nearly identical single-cell stacks except using different flow distributors under pressurized conditions. The platform includes a high-pressure program-controlled tubular furnace, the inner chamber, which is resided in a relatively large pressurized chamber (the outer chamber). So the single-cell stack embedded in a ceramic housing and assembled by an anode-supported positive electrode-electrolyte-negative electrode, a crofer 22-APU supporting frame and two current collectors which are sandwiched by a pair of rib-channel flow distributors for both anode and cathode can be measured inside the inner chamber at high temperature and elevated pressure conditions. A standard procedure is also developed for the safety and stable operation of the single-cell stack under atmospheric and pressurized conditions. Experimental results show that the cell performance increases with increasing pressure (P) but the relationship between cell performance and P is not linear. There is an increase in performance of 22% from 1 to 3 atm and 30% from 1 to 5 atm. This is in good agreement with the EIS data which reveals that the polarization impedance is significantly decreased from 1 to 3 atm and then nearly keeps the same when P is further increased from 3 to 5 atm. Furthermore, it is found that by using small guide vanes around the feed header of commonly-used rib-channel flow distributors to improve effectively the degree of flow uniformity, the power density of the single-cell stack can be increased as compared to that without using guide vanes under exactly the same experimental conditions, and such increase about 13% at 1 atm can be further increased up to 16% as P increases to 5 atm. These results should be useful to provide the basic knowledge for the future development of the high-efficiency SOFC and gas turbine integrating power generation technology
    Appears in Collections:[Graduate Institute of Mechanical Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML579View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明