English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 43081617      線上人數 : 721
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/47860


    題名: 同化多部都卜勒雷達資料以提升降水預報能力之研究-2008 SoWMEX IOP8個案分析;Assimilation of multiple-Doppler radar observations to improve the model quantitative precipitation forecast-A case study in IOP8 2008 SoWMEX
    作者: 陳尉豪;Wei-Hao Chen
    貢獻者: 大氣物理研究所
    關鍵詞: 都卜勒雷達;資料同化;定量降水預報;Doppler radar;data assimilation;quantitative precipitation forecast
    日期: 2011-06-29
    上傳時間: 2012-01-05 14:10:07 (UTC+8)
    摘要: 雷達觀測具有高時空解析度的優點,常使用於劇烈天氣的監控與觀測。本研究主要目的為利用多部都卜勒雷達觀測資料,改善模式當時的初始場,增進模式降水定量預報(Quantitative Precipitation Forecast:QPF)之能力。此方法主要包含三大部分:(1)多都卜勒風場合成、(2)熱動力反演、(3)水汽調整。 吾人選取2008西南氣流實驗計畫(SoWMEX)中所觀測到的IOP8個案,作為本研究的實驗對象。使用中央氣象局七股雷達(RCCG)、墾丁雷達(RCKT)及美國國家大氣研究中心(NCAR)所屬的SPOL雷達,於2008年6月14日1200UTC當時的回波及徑向風觀測資料,反演出三維風場結構,接著透過動量方程計算大氣熱動力場,並且利用回波等條件對水汽進行調整,最後同化至模式中。本研究使用NCAR Weather Research and Forecasting (WRF) Model作為計算平台。 本研究設計了一系列實驗,主要的結果有:(1)Kain-Fritsch及WSM6 Scheme為最佳的積雲參數化與微物理組合、(2)水汽的調整有其必要性、(3)風場合成與熱力反演時需考慮雪的存在、(4)以多部雷達網連增加資料覆蓋量對同化結果有重要的影響。 經過本方法調整模式初始場,實驗顯示模式的預報能力可達三小時,雖然降水有高估之趨勢,但相較未同化前的降水分佈會更趨近於觀測。未來更可將本方法用於測試午後對流或甚至颱風降雨系統的預報上。 An important advantage of radar observations is their high temporal and spatial resolutions, which are suitable for heavy weather surveillance. The purpose of this study is to improve the initial field and hence the quantitative precipitation forecast (QPF) of the numerical model by using multiple-Doppler radar observation data. The assimilation technique includes three components: multiple-Doppler radar wind synthesis, thermodynamic retrieval and moisture adjustment. A case during IOP8, Southwest Monsoon Experiment (SoWMEX) 2008 is selected in this study. The radar data in use are the reflectivity and radial wind of the RCCG and RCKT radars from CWB and the SPOL radar from NCAR at June 14, 2008. The 3-D winds, retrieved from the radar and sounding data, are utilized to calculate thermodynamic fields by the momentum equations. The moisture field is updated if some conditions, including a minimum reflectivity of 30 dBZ, occur. The numerical model in use is the Weather Research and Forecasting (WRF) model from NCAR. Some conclusions are made after a series of experiments: (1) A combination of Kain-Fritsch cumulus parameterization and WSM6 microphysics schemes gives the best result; (2) The moisture adjustment is necessary; (3) Both wind and thermodynamic retrieval algorithms consider the effect of snow; (4) Using multiple-Doppler radar data is necessary because a larger data coverage leads to better results. The above assimilation technique in this case significantly improves the accuracy of the forecast for at least 3 hours compared with the one without data assimilation in spite of overestimated precipitation. We expect applications of this technique to the cases of afternoon convection and even typhoons in the future.
    顯示於類別:[大氣物理研究所 ] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML674檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©  2006-2024  - 隱私權政策聲明