我們利用量測被碳與磷離子佈植之矽晶片的反射率,來研究固態磊晶成長的動力學問題。為了達到高濃度摻雜,超過平衡溶解度的非平衡長晶方式,如固態磊晶成長,很常被使用在半導體製造中。在這篇論文裡,我們將深入探討不同的原子摻雜以及摻雜濃度對於磊晶成長速度的影響。我們發現在摻雜磷濃度大於一個臨界值以前,成長速度隨著磷濃度增加而增快。然而,成長速度在磷濃度超過此臨界值以,變得非常的緩慢。另外,隨著熱退火溫度的增高,此臨界值也隨著增高。由片電阻的量測中,我們發現在較高的熱退火實驗中,得到的片電阻較低,因此,我們認為 此臨界值就是此實驗試片的非平衡溶解度。我們認為,超過臨界值的成長速度驟降的現象與(111)晶面的形成有關。對於碳摻雜的影響,我們發現碳摻雜也會增加長晶的速度,這是由於碳引起的伸張應力而造成的,而且在成長過程中,伸張應力會不斷的累積,造成成長速度越來越快的趨勢。實驗中觀察到熱退火溫度越高,摻雜活化的程度也越高,這是因為原子受到高速度的長晶過程而被侷限的因素。而在低熱退火溫度的試片中,那些沒有溶到晶格中的摻雜物,則被推到表面區,並造成伸張應力的釋放。 We experimentally investigate the slid phase epitaxial regrowth (SPER) of phosphorus and carbon implanted silicon by time resolved reflectivity spectroscopy. The dopants activation and impurities incorporation far beyond the equilibrium solubility limit during SPER is a non-equilibrium process. The SPER rate as a function of impurities concentration was analyzed. Phosphorus enhanced SPER rate was found for phosphorus concentration below a critical value, [P]c, while the regrowth rate retarded severely once the phosphorus concentration is larger than [P]c. We attribute the value of [P]c to the non-equilibrium dopant solubility limit be correlating the increasing value of [P]c to the decreasing measured sheet resistance. We suggest that the retarded SPER rate for phosphorus concentration beyond [P]c is caused by the solubility limits and results in the (111) facet formation. We found that for boxlike carbon distribution, SPER rate is increasing gradually during the regrowth process. We attribute it to the accumulated strain during the regrowth process. The high activation level and strain was found in high temperature annealing regime because higher SPER rate results in more substituted toms by high solute trapping rate. The non-activated phosphorus was pushed out to the surface region which greatly deteriorate the activation level in the recrystallized layer. In this thesis, dynamical process of SPER are discussed in detail.