English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42686438      線上人數 : 1554
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/48258


    題名: 以螢光訊號量測單晶矽太陽能電池物理參數之空間分布;Spatial distribution measurement of physical parameters for crystalline silicon solar cells using photoluminescence signal
    作者: 鍾穎昌;Ying-Chang Chung
    貢獻者: 照明與顯示科技研究所
    關鍵詞: 特徵串聯電阻;額外載子生命週期;螢光量測;擴散長度;photoluminescence measurement;excess carrier lifetime;specific series resistance;diffusion length
    日期: 2011-08-24
    上傳時間: 2012-01-05 14:42:45 (UTC+8)
    摘要: 本文使用光激發螢光影像技術,量測載子生命週期、擴散長度和特徵 串聯電阻。短路狀態時,單晶矽太陽能電池會因不同光強造成不同的螢光、 光電壓與光電流,此時便可利用短路螢光模型計算出載子生命週期影像、 光電壓影像與光電流影像,而擴散長度與載子生命週期有關,由此便可得 到擴散長度影像,最後載子生命週期也可推算出j-V 曲線,再藉由j-V 曲 線取其斜率便可計算出特徵串聯電阻影像。而載子生命週期影像帄均值約 為2.56*10^-5 sec,誤差百分比帄均則約為0.69 %;特徵串聯電阻影像帄均 值約為1.42 Ω*cm^2,誤差百分比帄均則約為0.35 %。為了驗證此量測法的 正確性,分別地使用入射光強度為0.82 W/cm^2與0.67 W/cm^2得到各別的 載子生命週期與特徵串聯電阻影像,將載子生命週期影像相除的結果帄均 值為1.05,其標準差為0.14;特徵串聯電阻影像相除的結果帄均值為1.02 , 其標準差為0.07,所以由標準差可知空間中的每個像素是與入射光無關的, 因此證明了這量測方法的正確性。接著再藉由入射光強度為0.82 W/cm^2 的 載子生命週期影像計算擴散長度影像,而擴散長度影像又分為n 型半導體 的電子與電洞擴散長度影像、p 型半導體的電子與電洞擴散長度影像,其帄 均值各別為66 μm、92 μm、289 μm、165 μm。 The article uses photoluminescence imaging technology to measure excess carrier lifetime, diffusion length and specific series resistance. Crystalline silicon solar cells has different photoluminescence, photovoltage and photocurrent because of different illumination result in the short-circuit state, we can use PL module in the short-circuit to calculate excess carrier lifetime imaging, photovoltage imaging and photocurrent imaging. The relationship between excess carrier lifetime and diffusion length, so we can obtain diffusion length imaging by excess carrier lifetime imaging. Finally, excess carrier lifetime can calculate the j-v curve, so we can obtain specific series resistance by the slope of j-v curve. Excess carrier lifetime imaging average is about 2.56*10^-5 sec , percentage error average is about 0.69 %, specific series resistance imaging average is about1.42 Ω*cm^2 , percentage error average is about0.35 %. In order to verify the correctness of this measurement method, we choose two illumination intensity at 0.82 W/cm^2 and 0.67 W/cm^2 , and then we obtain two excess carrier lifetime imaging and two specific series resistance imaging. We divide a excess carrier lifetime imaging by another excess carrier lifetime imaging, and specific series resistance imaging is the same. Average value of the results are about 1.05±0.14 and 1.02±0.07, we can know that each pixel is independent of illumination intensity by standard deviations, so we verify the correctness of this measurement method. On the illumination intensity is 0.82 W/cm^2 ,we use excess carrier lifetime imaging to calculate diffusion length imaging, the diffusion length imaging is divided into electron and hole iii diffusion length imaging of the n-type semiconductor, electron and hole diffusion length imaging of the p-type semiconductor, average value of the results are 66 μm,92 μm,289 μm,165 μm.
    顯示於類別:[照明與顯示科技研究所 ] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML934檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明