中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/48550
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 43439426      在线人数 : 1574
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/48550


    题名: 智慧型控制數位化鋰錳電池充電器之研製;Design and Implementation of DSP-based Intelligent Control for Li-ion Battery Charger
    作者: 蔡瀚章;Han-Chang Hsai
    贡献者: 電機工程研究所
    关键词: 定電流充電;定電壓充電;數位訊號處理器;相移式全橋轉換器;單相功率因數修正轉換器;機率型模糊類神經網路;Probabilistic fuzzy neural network (PFNN);power factor correction (PFC);phase-shift full-bridge (PSFB);digital signal processor (DSP);constant current (CC) charging;constant voltage (CV) charging
    日期: 2011-08-16
    上传时间: 2012-01-05 14:57:42 (UTC+8)
    摘要: 本論文提出一只以數位訊號處理器為基礎之機率型模糊類神經網路智慧型控制器控制兩級交流-直流鋰錳電池充電器。此充電器前級為具有主動式功率因數修正之單相交流-直流升壓轉換器;後級為相移式全橋直流-直流降壓轉換器。此充電器將設計對於兩顆鋰錳電池組實現定電流充電以及定電壓充電之混合式充電策略。為了要改善輸出電壓在負載調節時的暫態響應,而機率型模糊類神經網路控制器取代傳統的比例積分控制器。此外,使用所提出之機率型模糊類神經網路控制器可明顯地改善電池組在定電流充電模式轉換定電壓充電模式瞬間的不連續充電電流以及充電電壓之問題。本文將詳細介紹機率型模糊類神經網路的架構以及線上學習法則,而所提之機率型模糊類神經網路控制器在實現混合式充電策略的控制性能將由實驗結果驗證。 A digital signal processor (DSP)-based probabilistic fuzzy neural network (PFNN) is proposed in this study to control a two-stage AC-DC charger. The input stage and output stage of the charger are AC-DC boost converter with power factor correction (PFC) and phase-shift full-bridge (PSFB) DC-DC converter. The designed charger adopts constant-current and constant-voltage (CC-CV) charging strategy to charge two Lithium-ion (Li-ion) battery packs. To improve the transient of voltage regulation during load variation, a PFNN controller is proposed to replace the traditional proportional-integral (PI) controller. Moreover, the discontinuous charging voltage and current during the transition between the CC and CV charging modes can also be reduced significantly using the proposed PFNN controller. The network structure and the online learning algorithms of the PFNN controller are introduced in detail. Furthermore, the control performances of the proposed PFNN control system for CC-CV charging are evaluated by some experimental results.
    显示于类别:[電機工程研究所] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML1287检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明