在本三年計劃中,我們規劃進行深入探討於應變及微觀環境變異下摻雜與非摻雜缺陷之交互作用的動力學。在高溫退火條件下,含摻雜之非晶矽碳或矽鍺合金可以固相磊晶成長的形式再結晶成為具應變的單晶材料。當退火溫度低於材料熔化點時,固相磊晶成長動力是由該系統中的內應力及摻雜分布所決定。同時摻雜在該系統中的固體溶解度上限不僅取決於退火溫度,也與該系統中因為分子鍵結扭曲而造成之局部應變息息相關。目前文獻上針對上述現象所作的系統性實驗工作非常稀少。我們計畫利用時間解析反射率光譜來建立固相磊晶成長動力與摻雜固體溶解度的相關性。透過系統性的變化系統中摻雜與造成應變離子的原子半徑、濃度和分佈,我們尋求建立以即時光學量測為基礎的一套精準量測之實驗方法學以達到深入探討在矽基板中與摻雜固體溶解度極限相關的物理。同時我們也計畫建立一套半自製的光致發光掃描系統來探討在上述應變/摻雜交互作用系統情況下材料之能隙變化情形。綜合以上實驗觀察,我們尋求建立一非線性模型來定性描述上述複雜動力行為。本計劃中另一個目標是瞭解在微奈米侷限中摻雜之活化和擴散與系統中其他缺陷的交互作用。我們將在上一計畫執行中所學到固相磊晶成長相關的物理與本實驗室現有的掃描探針顯微技術結合來探討上述課題。目前文獻上針對相關課題的研究也很稀少。我們計畫透過光微影技術建立一多功能微奈米實驗平台來研究各種現存的系統性微環境變異課題。我們尋求建立一非線性模型來定性描述上述系統性變異現象。同時我們也計畫研究一些非系統性或製程漂移相關之如線邊緣粗糙度等的微環境變異課題。我們計畫透過非線性分析來瞭解上述多空間尺度物理現象。我們也在本計劃中致力建構比現存系統更精密的實驗系統以達到更高解析度及穩定度之目的。我們尋求建構一快速退火/時間解析光學量測共構系統來達到更高溫、更快及更準確之固態磊晶成長動力量測。我們同時也尋求改進現有掃描探針顯微系統之環境控制、探針特性、和表面處理程序來達到更穩定、更高解析度及更加訊噪比之量測的目的。我們相信花在建立一獨到的實驗系統的精力與時間是值得的投資。 In this proposed three-year project, we seek to further investigate the dynamics of the interplay between doping and isovalent impurities, under the influence of local strain or micro-environment variation. Impurities doped amorphized silicon carbon or silicon germanium alloys recrystallize into pseudomorphically strained single crystalline by solid phase epitaxial regrowth (SPER) under non-melting thermal excitation. SPER dynamics are determined by the internal strain and doping profiles in the system. The dopant solid solubility limit depends not only on annealing temperature but also local strain in the lattice due to bond deformation. So far no systematic experiment has been conducted to assess this issue. By in situ monitoring the time resolved reflectivity (TRR) signals, we seek to establish the correlation between SPER dynamics and dopant solid solubility. Furthermore, by systematic varying the strain-doping conditions in the experiment, we seek to achieve precise measurement methodology for understanding the physics behind the solid solubility limit issue in silicon by the in-situ optical based technique. By constructing a half-home-made photoluminescence mapping system, we seek to understand the band gap tuning in the materials due to the strain-doping conditions. We seek to build a non-linear model for the qualitative description of the complex behavior based on experimental data above. The understanding of dopant activation and diffusion in relation to defects in confined region is another topic we are pursuing in this proposal. We seek to combine our knowledge in SPER with scanning probe microscopy based dopant activation/diffusion measurement. The complex dynamics of dopant evolution during SPER and defect recovery in confined regions is still a poorly explored topic. Through sub-micron confinement construction by photolithography, we seek to build a multi-purposes experiment template for investigation of various systematic micro-loading effects. Besides the systematic variation, we also plan to study process related variation such as line edge roughness (LER) issues. Non-linear analysis techniques will be employed to understand the multiple length scale phenomena. We expect the finding should leads to direct impact to the micro-electronic manufacturing communities. Besides the investigations conducted in current tools configurations, we seek to build upgraded systems to improve both the resolution and stability in our existing system. We seek to build an in situ optical monitoring rapid thermal annealing (RTA) for high temperature, fast and high precision SPER dynamics measurement. We also seek to improve the scanning probe microscopy based dopant detection methodology for better environment control, tip modification and surface treatment to achieve more stable, higher resolution and lower signal to noise ratio system. We believe the effort of constructing a one-of-a-kind system is worthwhile for future works. 研究期間:10008 ~ 10107