中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/49552
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 42707066      在线人数 : 1238
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    NCU Institutional Repository > 理學院 > 數學系 > 研究計畫 >  Item 987654321/49552


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/49552


    题名: 非線性守衡律在流體力學模型中的應用;The Applications of Nonlinear Balance Laws to Some Models in Fluid Dynamics
    作者: 洪盟凱
    贡献者: 數學系
    关键词: 非線性守衡律;可壓縮尤拉方程;廣義 Buckley-Leverett 方程;尤拉-泊桑系統;幾何奇異擾動;廣義格林方法;研究領域:數學類
    日期: 2011-08-01
    上传时间: 2012-01-17 19:00:46 (UTC+8)
    出版者: 行政院國家科學委員會
    摘要: 在本計畫中,我們探討下列與流體力學相關的主題: 1. 具有 Lipschitz 連續及大規模時間變動因子之通量項與源項的非線性守衡律,其弱解的的整體存在性問題。 2. 幾何奇異擾動在不連續管道中可壓縮流之尤拉方程的應用。 3. 廣義 Buckley-Leverett 方程解的整體存在性及整體行為問題。 4. 具有壓力因子的尤拉-泊桑系統中整體古典解存在的臨界條件問題。關於第一個主題,我們推廣了我們先前的成果,將廣義的格林方法運用在僅具 Lipschitz 連續的通量項及源項的非線性守衡律系統。關於第二的主題,我們將 mollification 和 rescaling 技巧,加上 N. Fenichel 與 P. Szmolyan 發展的架構運用在我們的問題中。關於第三的主題,我們使用對於 BBM 型態方程能量估計法。關於第四個主題,我們推廣了 H. Liu 與 E. Tadmor 的結果並運用在具有壓力因子的尤拉-泊桑系統中,其結果可經由對未知變數做先驗估計來完成。 In this project, we study the following topics arise in fluid dynamics: 1. The global existence of weak solutions to the nonlinear balance laws with Lipschitz continuous flux and source. The flux and source also contain large time oscillating factors. 2. The geometric singular perturbations to compressible Euler equations with discontinuous variable area duct. 3. The global existence and behavior of solutions to the generalized Buckley-Leverett equation. 4. The threshold to the global classical solution of Euler-Poisson system with pressure. For the first topic, we extend the generalized Glimm method in our previous work to Lipschitz continuous flux and source. For the second topic, we apply the mollification and rescaling techniques, together with N. Fenichel and P. Szmolyan’s frameworks to our case. For the third topic, we use the energy estimate method for the BBM type of equations. To the last topic, we extend H. Liu and E. Tadmor’s result to the Euler-Poisson system with pressure. The result can be achieved by a priori estimate for unknowns. 研究期間:10008 ~ 10107
    關聯: 財團法人國家實驗研究院科技政策研究與資訊中心
    显示于类别:[數學系] 研究計畫

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML459检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明