English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42700754      線上人數 : 1470
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/49589


    題名: 大型天文時序特徵發掘與多維度模式關聯分析之機制與查詢系統;Large Scale Astronomical Time-Series Pattern Discovery and Multidimensional Association Analysis Query System
    作者: 蔡孟峰
    貢獻者: 資訊工程系
    關鍵詞: 研究領域:資訊科學--軟體
    日期: 2011-08-01
    上傳時間: 2012-01-17 19:05:10 (UTC+8)
    出版者: 行政院國家科學委員會
    摘要: 以往天文學者總是利用人工方式進行觀測紀錄的前處理以及各種分析工作,但隨著各種新式天文台計畫的啟動,觀測呈現爆炸性的增加,以人工處理這些每日數以TB 計的資料量將會是非常不切實際的行為。爲了能夠應映天文觀測紀錄的快速成長,我們需要新的大型資料管理架構,而新的數據資料分析方法更是至關重要。本計劃將會著眼於以下目標: 1.建構自動化資訊前處理系統由於天體和地球運轉關係,必須集合不同地區天文台資料,才能組成一個全天星體觀測紀錄。且天文觀測受限於硬體,氣候,時間,溫差等物理限制,須將不同資料修正至相同刻度,為此需要建立自動化的天文資訊前處理機制,此系統將可以利用網路擷取技術自動抓取不同站台資訊,並且根據天文台所紀錄的歷史觀測狀況自動修正並統整資料。 2.發展時序分析與關聯規則之策略機制天文領域非常重要的一環在於找尋各種星體間的相似或相異特徵,進而將星體分門別類。科學家以往使用手動人工比對的方式不但效率且較難發掘隱含,複雜或未知的特徵。爲此我們將引入資料探勘技術,從大量的資料中自動搜尋隱藏於其中的有著特殊關聯性的資訊。爲了應付大量儲存以及計算問題,我們會將系統建置於分散式環境中,同時讓使用者能夠快速存取及分析資料而不必擔心底層資料管理及維護問題 Astronomical researchers have been manually registering and maintaining observation data for various analysis processes. But with the ongoing construction of observatories from several international projects, the size of observation data has exploded. Manually processing several tera-bytes of data each day becomes impractical. Responding to this challenge, we need to construct large scale information management system, as well as the efficient methodology for data analysis. We have the following goals to achieve in this project: 1. Constructing an automatic information preparation system. Because of the movements of earth and astronomical objects, a complete set of observation records requires gathering data from world-wide observatories. Limited by factors such as hardware, weather, time, or temperature, we also need to calibrate and clarify heterogeneous data sources before data integration. Considering the rapidly growing data size, data preparation has to be processed automatically and efficiently. We will implement this preparation system with the accessibility of computer network and perform necessary calibration or transformation based on historical data features. The clarified data then can be integrated for further analysis and researches. 2. Develop astronomical time-series pattern mining and associated rule mining methodologies. Discovering the similarities between astronomical objects, and accordingly classify those objects, is an important process for many astronomical researches. Manually or semi-automatically comparison processes are unable to handle the huge scale data size in today’s research environment. We will introduce various data-mining or knowledge discovering techniques to facilitate discovering the unnoticed, unknown, or complicated features and relationships. The system will be developed based on the state of art distributed framework, to provide efficient quality of service without extra efforts on detailed data management 研究期間:10008 ~ 10107
    關聯: 財團法人國家實驗研究院科技政策研究與資訊中心
    顯示於類別:[資訊工程學系] 研究計畫

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML452檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明