English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 43195243      線上人數 : 1053
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/50166


    題名: Study on Injection Molding Parameters for Thin-Shell Plastic Parts Using a Neural Network-Based Approach
    作者: Lin,JC;Yang,YK;Hsiao,YH;Jeng,MC
    貢獻者: 機械工程學系
    日期: 2010
    上傳時間: 2012-03-27 17:05:08 (UTC+8)
    出版者: 國立中央大學
    摘要: This study analyzed variation of warpage and tensile properties depending on injection molding parameters during production of thin-shell plastic components. A hybrid method integrating back-propagation neural network (BPNN), genetic algorithm (GA), and simulated annealing algorithm (SAA) are proposed to determine an optimal parameter setting of the injection-molding process. The results of 18 experimental runs were utilized to train the BPNN predicting warpage and tensile properties at various injection-molding conditions and then the GA and SAA approaches were applied to individual search for an optimal setting. The results show that the combinations of BPNN/ GA and BPNN/SAA methods are effective tool for the optimization of injection molding parameter.
    關聯: POLYMER-PLASTICS TECHNOLOGY AND ENGINEERING
    顯示於類別:[機械工程學系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML354檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明