中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/50367
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 42701868      Online Users : 1356
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/50367


    Title: Elliptical model of cutoff boundaries for the solar energetic particles measured by POES satellites in December 2006
    Authors: Dmitriev,AV;Jayachandran,PT;Tsai,LC
    Contributors: 太空科學研究所
    Keywords: GEOMAGNETIC CUTOFF;SPACE WEATHER;ELECTRONS;LATITUDE;MAGNETOSPHERE;PENETRATION;PARAMETERS;DEPENDENCE;DYNAMICS;PROTONS
    Date: 2010
    Issue Date: 2012-03-27 17:30:13 (UTC+8)
    Publisher: 國立中央大學
    Abstract: Experimental data from a constellation of five NOAA Polar Orbiting Environmental Satellites (POES), satellites were used for studying the penetration of solar energetic particles (SEP) to high latitudes during long-lasting SEP events on 5-15 December 2006. We determined cutoff latitudes for electrons with energies >100 keV and >300 keV and for protons with energies from 240 keV to >140 MeV. The large number of satellites allowed us to derive snapshots of the cutoff boundaries with 1-hour time resolution. The boundaries were fitted well by ellipses. On the basis of the elliptical approach, we developed a model of cutoff latitudes for protons and electrons in the northern and southern hemispheres. The cutoff latitude is represented as a function of rigidity, R, of particles; MLT, geomagnetic indices Dst, Kp, and AE; and dipole tilt angle PS. The model predicts tailward and duskward shifting of the cutoff boundaries in relation to intensification of the cross-tail current, field-aligned currents, and symmetrical and asymmetrical parts of the ring current. The model was applied for prediction of polar cap absorption (PCA) effects observed at high latitudes by the Canadian Advanced Digital Ionosonde network of ionosondes. It was found that the PCA effects are related mainly to intense fluxes of >2.5 MeV protons and >100 keV electrons, which contribute mostly to the ionization of ionospheric D-layer at altitudes of similar to 75 to 85 km. This finding was confirmed independently by FORMOSAT-3/COSMIC observations of the SEP-associated enhancements of electron content at altitudes of similar to 80 km.
    Relation: JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
    Appears in Collections:[Graduate Institute of Space Science] journal & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML390View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明