中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/50481
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 42693550      Online Users : 1481
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/50481


    Title: Evolution of the turbulence structure in the surf and swash zones
    Authors: Sou,IM;Cowen,EA;Liu,PLF
    Contributors: 水文與海洋科學研究所
    Date: 2010
    Issue Date: 2012-03-27 17:33:07 (UTC+8)
    Publisher: 國立中央大學
    Abstract: The velocity field and turbulence structure within the surf and swash zones forced by a laboratory-generated plunging breaking wave were investigated using a particle image velocimetry measurement technique. Two-dimensional velocity fields in the vertical plane from 200 consecutive monochromatic waves were measured at four cross-shore locations, shoreward of the breaker line. The phase-averaged mean flow fields indicate that a shear layer occurs when the uprush of the bore front interacts with the downwash flow. The turbulence characteristics were examined via spectral analysis. The larger-scale turbulence structure is closely associated with the breaking-wave- and the bore-generated turbulence in the surf zone; then, the large-scale turbulence energy cascades to smaller scales, as the turbulent kinetic energy (TKE) evolves from the outer surf zone to the swash zone. Smaller-scale energy injection during the latter stage of the downwash phase is associated with the bed-generated turbulence, yielding a -1 slope in the upper inertial range in the spatial spectra. Depth-integrated TKE budget components indicate that a local TKE equilibrium exists during the bore-front phases and the latter stage of the downwash phases in the outer surf zone. The TKE decay resembles the decay of grid turbulence during the latter stage of the uprush and the early stage of the downwash, as the production rate is small because of the absence of strong mean shear during this stage of the wave cycle as well as the relatively short time available for the growth of the bed boundary layer.
    Relation: JOURNAL OF FLUID MECHANICS
    Appears in Collections:[Graduate Institute of Hydrological and Oceanic Sciences] journal & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML574View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明