中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/50694
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 78937/78937 (100%)
Visitors : 39831430      Online Users : 1293
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/50694


    Title: A simulation and theoretical study of energy transport in the event of MHD Kelvin-Helmholtz instability
    Authors: Lai,SH;Lyu,LH
    Contributors: 天文研究所
    Keywords: LATITUDE BOUNDARY-LAYER;MAGNETOSPHERIC BOUNDARY;EARTHS MAGNETOSPHERE;GEOTAIL OBSERVATIONS;SOLAR-WIND;MAGNETOPAUSE;PLASMA;VORTICES;VORTEX;FIELD
    Date: 2010
    Issue Date: 2012-03-27 18:08:05 (UTC+8)
    Publisher: 國立中央大學
    Abstract: Surface waves developed from the Kelvin-Helmholtz (K-H) instability perturb the ambient plasma and radiate waves that extract surface-wave energy. In magnetohydrodynamic (MHD) plasma, the fast-mode waves can propagate across the magnetic field lines. The fast-mode waves emitted from the surface perturbations should play an important role in transporting the surface-wave energy away from the velocity shear layer. Thus, the energy transported by the K-H instability should not be confined near the velocity shear layer. In this study, energy transport in the events of K-H instabilities is studied by the two-dimensional MHD simulation. Our simulation results indicate that most of the energy flux is confined in the vicinity of the velocity shear layer when the fast-mode Mach number of the surface wave is less than one. However, a small amount of the surface-wave energy is transported away from the velocity shear layer by the fast-mode waves. A considerable amount of the surface-wave energy is transported away from the velocity shear layer with the expanding of the fast-mode Mach-cone-like plane waves when the fast-mode Mach number of the surface wave is greater than one. It is shown that the fast-mode Mach-cone-like plane waves can transport the surface-wave energy away from the velocity shear layer efficiently. In this study, we also find that the energy transport velocity obtained from our simulation results is approximately equal to the group velocity of the fast-mode wave. Applications of our simulation results to the magnetosphere are also discussed.
    Relation: JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
    Appears in Collections:[天文研究所] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML369View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明