中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/51136
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 43942337      在线人数 : 935
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    NCU Institutional Repository > 理學院 > 數學系 > 期刊論文 >  Item 987654321/51136


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/51136


    题名: Minimizers of Caffarelli-Kohn-Nirenberg Inequalities with the Singularity on the Boundary
    作者: Chern,JL;Lin,CS
    贡献者: 數學系
    关键词: SEMILINEAR ELLIPTIC-EQUATIONS;INTERPOLATION INEQUALITIES;EXTREMAL-FUNCTIONS;POSITIVE SOLUTIONS;SCALAR CURVATURE;SHARP CONSTANTS;SOBOLEV;SYMMETRY;NONEXISTENCE;EXISTENCE
    日期: 2010
    上传时间: 2012-03-27 18:22:56 (UTC+8)
    出版者: 國立中央大學
    摘要: Let Omega be a bounded smooth domain in R(N), N >= 3, and D(a)(1,2) (Omega) be the completion of C(0)(infinity) (Omega) with respect to the norm: ||u||(2)(a) = integral(Omega)|x|(-2a)|del u|(2)dx. The Caffarelli-Kohn-Nirenberg inequalities state that there is a constant C > 0 such that (integral(Omega)|x|(-bq)|u|(q)dx)(2/q) <= C integral(Omega)|x|(-2a)|del u|dx for u is an element of D(a)(1,2) (Omega) and [GRAPHICS] We prove the best constant for (0.1) [GRAPHICS] is always achieved in D(a)(1,2) (Omega) provided that 0 is an element of partial derivative Omega and the mean curvature H(0) < 0, where a, b satisfies (i) a < b < a + 1 and N >= 3, or (ii) b = a > 0 and N >= 4. If a = 0 and 1 > b > 0, then the result was proved by Ghoussoub and Robert [12].
    關聯: ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS
    显示于类别:[數學系] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML548检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明