English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42690417      線上人數 : 1461
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/51486


    題名: IMPROVING RIVAL PENALIZED COMPETITIVE LEARNING USING DENSITY-EVALUATED MECHANISM
    作者: Chang,YJ;Yang,SS;Ho,CL
    貢獻者: 通訊工程學系
    日期: 2010
    上傳時間: 2012-03-27 18:54:11 (UTC+8)
    出版者: 國立中央大學
    摘要: Rival penalized competitive learning (RPCL) and its variants have provided attractive ways to perform clustering without knowing the exact cluster number. However, they are always accompanied by problems of falling in local optima and slow learning speed. Thus we investigate the RPCL and propose a mechanism to directly prune the RPCL's structure by evaluating the data density of each unit. We call the new strategy density-evaluated RPCL (DERPCL). The communication channel state is estimated by the DERPCL in the simulations, and comprehensive comparisons are made with other RPCLs. Results show that the DERPCL is superior in terms of convergence accuracy and speed.
    關聯: JOURNAL OF THE CHINESE INSTITUTE OF ENGINEERS
    顯示於類別:[通訊工程學系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML498檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明