English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 43334845      線上人數 : 1472
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/51511


    題名: A neural tree and its application to spam e-mail detection
    作者: Su,MC;Lo,HH;Hsu,FH
    貢獻者: 資訊工程學系
    關鍵詞: NETWORKS;CLASSIFICATION;EXTRACTION
    日期: 2010
    上傳時間: 2012-03-27 18:54:50 (UTC+8)
    出版者: 國立中央大學
    摘要: This paper presents a new approach to constructing a neural tree to integrate the advantages of decision trees and neural networks. The proposed neural tree, called a quadratic-neuron-based neural tree (QUANT), is a tree-structured neural network composed of neurons with quadratic neural-type junctions for pattern classification. A quadratic neuron is capable of forming a hyper-ellipsoid that can be varied in sizes and in locations on the space spanned by the input variables. Via a batch-mode training algorithm, the QUANT grows a neural tree containing quadratic neurons in its nodes. These quadratic neurons recursively partition the feature space into hyper-ellipsoidal-shaped sub-regions. The QUANT has the partial incremental capability so that it does not need to re-construct a new neural tree to accommodate new training data whenever new data are introduced to a trained QUANT. To demonstrate the performance of the proposed QUANT, one pattern recognition problem and the spam e-mail detection problem were tested. (C) 2010 Elsevier Ltd. All rights reserved.
    關聯: EXPERT SYSTEMS WITH APPLICATIONS
    顯示於類別:[資訊工程學系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML455檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明