中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/51539
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 43208202      在线人数 : 1218
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/51539


    题名: Efficient Human Action and Gait Analysis Using Multiresolution Motion Energy Histogram
    作者: Yu,CC;Cheng,HY;Cheng,CH;Fan,KC
    贡献者: 資訊工程學系
    日期: 2010
    上传时间: 2012-03-27 18:55:35 (UTC+8)
    出版者: 國立中央大學
    摘要: Average Motion Energy (AME) image is a good way to describe human motions. However, it has to face the computation efficiency problem with the increasing number of database templates. In this paper, we propose a histogram-based approach to improve the computation efficiency. We convert the human action/gait recognition problem to a histogram matching problem. In order to speed up the recognition process, we adopt a multiresolution structure on the Motion Energy Histogram (MEH). To utilize the multiresolution structure more efficiently, we propose an automated uneven partitioning method which is achieved by utilizing the quadtree decomposition results of MEH. In that case, the computation time is only relevant to the number of partitioned histogram bins, which is much less than the AME method. Two applications, action recognition and gait classification, are conducted in the experiments to demonstrate the feasibility and validity of the proposed approach.
    關聯: EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING
    显示于类别:[資訊工程學系] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML456检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明