中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/51576
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 43335178      Online Users : 1455
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/51576


    Title: Sentiment-oriented contextual advertising
    Authors: Fan,TK;Chang,CH
    Contributors: 資訊工程學系
    Date: 2010
    Issue Date: 2012-03-27 18:56:33 (UTC+8)
    Publisher: 國立中央大學
    Abstract: Web advertising (Online advertising), a form of advertising that uses the World Wide Web to attract customers, has become one of the world's most important marketing channels. This paper addresses the mechanism of Content-based advertising (Contextual advertising), which refers to the assignment of relevant ads to a generic web page, e.g., a blog post. As blogs become a platform for expressing personal opinion, they naturally contain various kinds of expressions, including both facts and comments of both a positive and negative nature. Besides, in line with the major tenet of Web 2.0 (i.e., user-centric), we believe that the web-site owners would be willing to be in charge of the ads which are positively related to their contents. Hence, in this paper, we propose the utilization of sentiment detection to improve Web-based contextual advertising. The proposed sentiment-oriented contextual advertising (SOCA) framework aims to combine contextual advertising matching with sentiment analysis to select ads that are related to the positive (and neutral) aspects of a blog and rank them according to their relevance. We experimentally validate our approach using a set of data that includes both real ads and actual blog pages. The results indicate that our proposed method can effectively identify those ads that are positively correlated with the given blog pages.
    Relation: KNOWLEDGE AND INFORMATION SYSTEMS
    Appears in Collections:[Department of Computer Science and information Engineering] journal & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML420View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明