|
English
|
正體中文
|
简体中文
|
全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 43212159
線上人數 : 1203
|
|
|
資料載入中.....
|
請使用永久網址來引用或連結此文件:
http://ir.lib.ncu.edu.tw/handle/987654321/51807
|
題名: | Combining multiple feature selection methods for stock prediction: Union, intersection, and multi-intersection approaches |
作者: | Tsai,CF;Hsiao,YC |
貢獻者: | 資訊管理學系 |
關鍵詞: | SUPPORT VECTOR MACHINES;NEURAL-NETWORKS;GENETIC ALGORITHMS;PRICE PREDICTION;TIME-SERIES;TECHNICAL ANALYSIS;COMPONENT ANALYSIS;IMPLEMENTATION;RETURNS;OPTIMIZATION |
日期: | 2010 |
上傳時間: | 2012-03-27 19:06:37 (UTC+8) |
出版者: | 國立中央大學 |
摘要: | To effectively predict stock price for investors is a very important research problem. In literature, data mining techniques have been applied to stock (market) prediction. Feature selection, a pre-processing step of data mining, aims at filtering out unrepresentative variables from a given dataset for effective prediction. As using different feature selection methods will lead to different features selected and thus affect the prediction performance, the purpose of this paper is to combine multiple feature selection methods to identify more representative variables for better prediction. In particular, three well-known feature selection methods, which are Principal Component Analysis (PCA), Genetic Algorithms (GA) and decision trees (CART), are used. The combination methods to filter out unrepresentative variables are based on union, intersection, and multi-intersection strategies. For the prediction model, the back-propagation neural network is developed. Experimental results show that the intersection between PCA and GA and the multi-intersection of PCA, GA, and CART perform the best, which are of 79% and 78.98% accuracy respectively. In addition, these two combined feature selection methods filter out near 80% unrepresentative features from 85 original variables, resulting in 14 and 17 important features respectively. These variables are the important factors for stock prediction and can be used for future investment decisions. (C) 2010 Elsevier B.V. All rights reserved. |
關聯: | DECISION SUPPORT SYSTEMS |
顯示於類別: | [資訊管理學系] 期刊論文
|
文件中的檔案:
檔案 |
描述 |
大小 | 格式 | 瀏覽次數 |
index.html | | 0Kb | HTML | 482 | 檢視/開啟 |
|
在NCUIR中所有的資料項目都受到原著作權保護.
|
::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::