English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 43336478      線上人數 : 1475
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/51809


    題名: Credit rating by hybrid machine learning techniques
    作者: Tsai,CF;Chen,ML
    貢獻者: 資訊管理學系
    日期: 2010
    上傳時間: 2012-03-27 19:06:39 (UTC+8)
    出版者: 國立中央大學
    摘要: It is very important for financial institutions to develop credit rating systems to help them to decide whether to grant credit to consumers before issuing loans. In literature, statistical and machine learning techniques for credit rating have been extensively studied. Recent studies focusing on hybrid models by combining different machine learning techniques have shown promising results. However, there are various types of combination methods to develop hybrid models. It is unknown that which hybrid machine learning model can perform the best in credit rating. In this paper, four different types of hybrid models are compared by 'Classification + Classification', 'Classification + Clustering', 'Clustering + Classification', and 'Clustering + Clustering' techniques, respectively. A real world dataset from a bank in Taiwan is considered for the experiment. The experimental results show that the 'Classification + Classification' hybrid model based on the combination of logistic regression and neural networks can provide the highest prediction accuracy and maximize the profit. (C) 2009 Elsevier B.V. All rights reserved.
    關聯: APPLIED SOFT COMPUTING
    顯示於類別:[資訊管理學系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML463檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明