English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 43195068      線上人數 : 1030
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/52104


    題名: Support vector machines using Bayesian-based approach in the issue of unbalanced classifications
    作者: Chung,HY;Ho,CH;Hsu,CC
    貢獻者: 電機工程學系
    關鍵詞: GAUSSIAN-PROCESSES
    日期: 2011
    上傳時間: 2012-03-28 10:15:33 (UTC+8)
    出版者: 國立中央大學
    摘要: There have been a lot of reports about the fact that the characteristics of datasets will strongly affect the performance of different classifiers. A study in the cognition is thus conceived, and it is natural to propose the Bayesian approach. As is well known, valuable quantitative features from datasets are easily captured and then to update these previous classification problems to guarantee well class separability. The purpose of this learning method is to give an attractive pragmatic feature of the Bayesian approach in the quantitative description of class imbalance problem. Thus, a programming problem of mixing probability information: Bayesian Support Vector Machines (BSVMs) is discussed. In addition, we first change some of the aims and conditions of the original programming problems and then explore what effect will be acquired due to the change. The experiments on several existing datasets show that, if prior distributions are assigned to the programming problem, the estimated classification errors will be reduced. (C) 2011 Elsevier Ltd. All rights reserved.
    關聯: EXPERT SYSTEMS WITH APPLICATIONS
    顯示於類別:[電機工程學系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML344檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明