English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 78852/78852 (100%)
造訪人次 : 35636487      線上人數 : 1436
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/52641


    題名: 新穎核-殼光觸媒材料製備與產氫反應研究;Novel Core-Shell Photocatalyst- Materials Synthesis and Hydrogen Production
    作者: 李岱洲
    貢獻者: 化學工程與材料工程學系
    關鍵詞: 化學工程類
    日期: 2012-08-01
    上傳時間: 2012-06-08 15:44:19 (UTC+8)
    出版者: 行政院國家科學委員會
    摘要: 綠色製程的目標以降低能源的耗損、減少原料的使用量、開發對環境無害的製程。以水溶液化學方式在較低溫度製備光觸媒粉體能夠滿足部分需求,是一種相當簡單、便宜的合成方式。本實驗室已經成功使用化學水浴法合成可見光光觸媒AgInS2-ZnS 固態溶液粉體,唯熱處理高達800 ºC,仍屬於耗能的製程,而且觸媒之粒徑較大,產氫效率受到限制。我們提出此3 年期計劃,結合熱力學與動力學的知識,設計觸媒材料的核-殼結構,將電子-電洞對分離效率最佳化;並且開發微波加熱與超音波震盪法(聲化學),有效控制光觸媒粒徑在奈米等級。第1 年的研究重點為研究光生載子在多成分硫化物材料中的遷移行為,得到載子壽命與擴散係數等資訊,以協助設計光觸媒薄膜與粉體的尺度;開發微波加熱的製程達到光觸媒奈米化。第2 年的研究重點為開發超音波震盪法(聲化學)製備光觸媒,與微波加熱製程比較,得到較佳製程參數;依據不同材料的能帶相對位置與光生載子的遷移行為設計與製作殼-殼結構。第3 年的研究重點便是結合上述2 年的研究成果,進行孔洞結構的製作研究,以增加光電化學反應的比表面積;並且使用微含浸與混合自組裝單分子膜修飾光觸媒表面,探討共觸媒-光觸媒界面行為對於光分解水產氫效能影響。藉由適當的反應製程開發,製備可以控制粒徑的光觸媒,並結合能帶搭配與光生載子的輸送行為,設計核-殼結構光觸媒,達到提升光化學與光電化學反應製氫效率。 The concepts of green chemistry emphasize low consumption of energy and raw materials, low generation of waste, and environmental friendly fabrication. Chemical bath deposition (CBD) is a relatively simple and convenient method to prepare a wide range of metal sulfides at low temperatures, which provides a way to meet some of the requirements. Our laboratory has successfully synthesized visible-light photocatalyst, AgInS2-ZnS solid solutions from aqueous solutions. However, the heat treatment temperature is still high, at 800 ºC for 1 h, and the particle size is still large, which hinders the solar-to-fuel efficiency. We propose this three-year project to systematically investigate and develop a core-shell structure, with an optimum length scale of each material. We will integrate the knowledge of thermodynamics and kinetics, in order to design this multi-component sulfide photocatalysts to facilitate the electron-hole separation and increase the hydrogen production efficiency. In the first year, we will concentrate on the microwave-assisted synthesis of photocatalysts in the nanoscale. One pot chemistry and two-step synthesis strategy will be used. We will also develop an analytical protocol to study the transport behavior (kinetics) of photo-induced carriers inside the materials. The lifetime and diffusion coefficient of these carriers directly affect the size of the photo-absorbing materials. The focus of the second-year research is to develop the sonochemical synthetic strategy to fabricate photocatalysts. A better process can be obtained by comparing aforementioned synthetic methods (microwave vs. sonochemistry). Additionally, based on the transport behavior of the charge carriers and energy band diagrams of the semiconductor materials, we can design a novel core-shell structure with a better photocatalytic activity. In the final year of the proposal, porous photo-active materials will be fabricated to increase the specific area. Co-catalysts will then be loaded onto the photocatalysts using traditional micro-impregnation or mixed self-assembled monolayers. The interface properties between the co-catalysts and photocatalysts will be investigated. Hydrogen production from water splitting will be performed and the efficiency will be evaluated. These results provide a foundation as an important building block for the future industrial applications. 研究期間:10108 ~ 10207
    關聯: 財團法人國家實驗研究院科技政策研究與資訊中心
    顯示於類別:[化學工程與材料工程學系 ] 研究計畫

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML449檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明