中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/52978
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 42739744      在线人数 : 2754
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/52978


    题名: Strength of adhesion clusters under shared linear loading
    作者: Liang,HH;Chen,HY
    贡献者: 物理學系
    关键词: DYNAMIC FORCE SPECTROSCOPY;CHEMICAL-REACTIONS;CELL-ADHESION;BONDS;MODEL;SIMULATION;MOLECULES;KINETICS
    日期: 2011
    上传时间: 2012-06-11 10:52:48 (UTC+8)
    出版者: 國立中央大學
    摘要: A cluster of N ligand-receptor pairs between two parallel surfaces under an applied force F = Gamma t with a constant loading rate Gamma is considered. Our theoretical and numerical studies show that there is a characteristic force f(c) and a characteristic loading rate Gamma(c). At Gamma < Gamma(c), the mean rupture force F(r) of the cluster is close to but lower than Nf(c). In this regime, cluster dissociation can be modeled as a one-dimensional barrier crossing process and F(r) scales like Nf(c) - F(r) similar to N(1/3)[ln(Gamma(c)/Gamma)](2/3). At Gamma = Gamma(c), the cluster dissociation occurs at F(r) = Nf(c). At Gamma > Gamma(c), F(r) for clusters with large N is well predicted by the rate equation because the fluctuations of the number of closed bonds are unimportant. Our study shows that f(c) and Gamma(c) are important emergent properties for understanding the mechanical response of adhesion clusters.
    關聯: PHYSICAL REVIEW E
    显示于类别:[物理學系] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML333检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明