幹細胞本身具有良好的自我再生特性與分化成不同細胞的能力,因此在再生醫學的應用上逐漸受到重視,但也因為幹細胞的分化容易受到環境因子的影響,使得幹細胞在臨床應用上仍然面臨嚴峻的挑戰。利用微機電製程技術所設計的微流體晶片系統能夠提供給幹細胞一個更加精確的控制且接近人體體內尺度(In vivo-like)的培養環境,此外,微流體晶片還具有體積小、減少汙染、降低樣本耗費與試劑成本以及可在螢光顯微鏡下進行即時觀察等特點。 本研究的目的是在建立起一個新型的微流體培養平台提供給胎盤幹細胞(PDMCs)使用,讓胎盤幹細胞可以穩定地進行長時間的培養與分化。實驗結果證實此裝置可滿足生物相容性之需求,細胞可以在連續灌注的培養條件下進行超過10天的長期培養。另外,本研究也利用藥物IBMX讓胎盤幹細胞分化成神經細胞,並於投藥過程的前10分鐘給予三組不同注入流率(0.083 μL/min、2 μL/min與30 μL/min)之流場刺激,並觀察在刺激之後的72小時內其對細胞分化之影響。實驗結果顯示較高的流率下具有增進細胞提早分化的發生。Stem-cell biology for the applications of regenerative medicine is gathering great interests because of their self-renewal property and ability to differentiate into many types of cells. Since differentiation of stem cells is sensitive to environmental factors, stem cells for clinical use are encountering a vast challenge. The microfluidic chip system fabricated by micro electro mechanical systems (MEMS) technology is able to provide microenvironments which can mimic in vivo surroundings and to be well-controlled. Besides, these devices are characterized as a smaller size, less sample/reagent consumption, reduced risk of contamination, and real-time optical analysis. In this study, a new microfluidic chip system is developed which can culture and differentiate PDMCs in in vivo-like microenvironments. Experimental results indicate that the microfluidic chip system can achieve a well biocompatibility, and the cells can be cultured under perfusion in the chips over 10 days. We also used IBMX to induce the differentiation of PDMCs into neuron within temporary fluid flow stimuli under the various rate at 0.083, 2 and 30 μL/min, respectively. The results illustrate that the fluid flow could promote cells differentiation earlier at higher flow rates.