中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/53640
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 42734674      Online Users : 1386
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/53640


    Title: Hadoop雲端平台在工程應用之探討研究;Study on the Hadoop Cloud Computing Platform for Engineering Applications
    Authors: 楊貴安;Yang,Kuei-an
    Contributors: 土木工程研究所
    Keywords: 雲端運算;Hadoop;分散式系統;虛擬叢集;Distributed Systems;Hadoop;Cloud Computing
    Date: 2012-07-25
    Issue Date: 2012-09-11 18:04:16 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 雲端運算是一種新的網路概念,是藉由網路串聯不同電腦之間的相互合作,藉由網路的概念來產生相應的技術,本質來自於分散式運算與網格運算。分散式運算是將大型工作分成很多小型工作,再分別分配給眾多的電腦運算,最後再匯集所有的結果來完成單機無法完成的工作。網格運算則是分散式運算的一種延伸,主要特色是將不同平台、不同等級、不同架構的電腦藉由分散式運算來做整合,所以雲端運算與網格運算都是一種分散式運算的延伸。網格運算是強調整合眾多不同的平台,而雲端運算是強調在本機有限的資源利用網路來取得運算資源。因此,建置分散式運算的雲端平台研究有其必要性。本研究建置雲端分散式檔案系統Hadoop,Hadoop Distributed File System(HDFS),使用四台實體電腦來架設四台虛擬叢集環境與八台虛擬叢集環境。四台虛擬叢集電腦架設方式是在每台實體電腦各虛擬一台電腦出來,共四台虛擬叢集環境,而八台虛擬叢集電腦架設方式是在每台實體電腦各虛擬兩台電腦出來,共八台虛擬叢集環境。經本研究結果實現,一台實體電腦可以虛擬兩台以上電腦,符合雲端虛擬化上百台或上千台的叢集環境。其次,雲端分散式系統是來處理大量的運算,本研究藉由矩陣大量的運算來測試Hadoop分散式檔案系統。而矩陣運算在工程應用是常見且重要的,不過目前矩陣運算都是以MPI(Message Passing Interface)來實現,並無在雲端平台上來實現,因此本研究藉由雲端平台來實施矩陣運算。Cloud computing is a new concept of networking. Cloud computing is a co-operation of the network which allows several computers to work together. The nature of cloud computing are from distributed computing and grid computing. Distributed computing is a large work divided into several small parts. Then it will be handed over to several computers to do the computing process. Finally, to bring all the results together to complete the stand-alone computing could not be done. Grid computing is an extension of the distributed computing. The main features of different platforms, different levels of the different computer structure integrated by distributed computing. Cloud computing and grid computing are extensions of a distributed computing. Grid computing is the emphasis on the integration of many different platforms. While cloud computing is the emphasis on limited resources in the machine, which use internet to obtain the computing resources. Therefore, build distributed computing cloud platform is necessary. The objective of this study is to build a cloud distributed systems Hadoop, Hadoop Distributed File System (HDFS).We use four physical computers to host four virtual cluster environments with eight virtual cluster environments. The four cluster computers set up in each physical computer, with one virtual computer exist for each physical computer, so there are four virtual cluster environments. Then each of the four physical computers is built two virtual computers inside, so there are eight virtual cluster environments. It proves that a physical computer can has two or more virtual computers. Comply with the cloud virtualization of hundreds or thousands of cluster environments. Moreover, cloud distributed systems can deal with a lot of computing that we used in computing matrix. Matrix computing is important of engineering application. But usually implement MPI(Message Passing Interface). So this paper implements matrix computing of cloud platform.
    Appears in Collections:[Graduate Institute of Civil Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML560View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明